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& What 1s geothermal energy?
@ Classification of geothermal energy.
,‘g Ground heat Sources.

A Exploitation of shallow geothermal energy.
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* Geothermal energy is the energy produced and stored into the ground
from the sun or during rock formation.

Shallow geothermal Deep geothermal
e
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Classifications of geothermal resources
l Geothermal
I'eSOIlll'CQS
Shallow Deep (>400
* According to depth (<400 m) m)
l Open l Closed
loop loop
Vertlcal Horlzontal
l systems (BHE) l systems
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Medium

enthalpy
* According to Temperatu (90<T<150
C)
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Classifications of '

= High enthalpy (T > 150 °C)
* Electric energy production
* District heating.

* Medium enthalpy (90<T<150 °C)

* Electric energy production (<5
MW)

* District heating (urban network)

* Heating of industrial and
commercial firms

2/17/2024
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Classifications of
geothermal resources

" Jow enthalpy (T <90 °C)
* District heating (neighborhood network)
* Heating of industrial and commercial firms

= Ambient heat (T<40 °C)
* Can be exploited by heat pumps.
* Heating/cooling/hot water of single buildings.
* Heating/cooling in the agriculture sector.
* Snow melting and de-icing
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Ground Heat Sources

Endogenous
fluids

Geothermal
gradient

Sun
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Heating /Cooling
Buildings

Baths

Industries

Roads
Swimming pools
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e Climate wave:

T(t) = Ty + VTt — A.Cos (T2 7

30

20

°
T[]

T, : Yearly average temperature °C
A: Wave amplitude °C
T : Wave period d
to: day of minimum temperature d
=20

VT,,: climatic trend (°C/d) 0 so 100 150 200 25 300 350
t[d]

10

-10
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Heat gained from the sun
» Heat is transferred into the ground.
* T,(D,t) = Ty + VT,,,.t — A.exp [—D T:‘g] Cos[— (t — tTO'% . %}]

* a: thermal diffusivity m#/day
* D: depth (m)

2/17/2024 13
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* Temperature of the ground 1s affected by the climate until certain

depth (D) then it keeps constant.

* Geothermal energy is independent 15 | ,\/
Of Climate -20 } Neutral zone

D [m] -25—

-15,00 -5,00 5,00 15,00 25,00 35,00 45,00

1]
g 3 & F

* lasts during the year. 30 | —_—

october

T[C]
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Ground Heat

* Finally, the contribution of sun and geothermal gradient to the ground temperature can
be expressed as:

T,(D,t) = Ty + VT,,,.t —A.exp [ / ] Cos— (t—tTO-B : L)]+
T.ag 2 T.ag

e h: heat flow density W/m?
* A: thermal conductivity of the layer (W/m.°C)
* VI, : geothermal gradient .°C/km

2/17/2024 15
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Ground Heat

» The average value of the heat flow of ground is 65 m W/m?*.
* Based on geothermal gradient value of 3 °C/100 m.

* Based on thermal conductivity value of 2.20 W/m.°C. which depends on
rock/soil type.

* Heat flow is q = % (W/m?).

¢ Q: }\A VTGBO

2/17/2024 16
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Mediterranean Sea mW/m?
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* Shallow geothermal can be exploited in different ways:

* Closed loop system: ~ Open Loop
* Through pipelines’ loop.

* Open loop system: i l
* Through production and injection wells.
e Lakes or seas.

2/17/2024 S 18
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* Shallow resources can be exploited in closed loops using heat pumps
through different systems such as:

* Vertical system
* Horizontal system

b 2 horizontal fie

’t B 2. vertical field
= .

2/17/2024 19
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* Vertical Borehole heat exchangers (BHE):

* Vertical boreholes are drilled and connected to the heat pump

* Higher depth

* Requires lower area
* More output power
* Climate independent. Vertical Loop

Where space is limited, the sealed

piping loop can be inserted in
small holes ranging from 150 to
400 feet deep that are installed
using a well-drilling rig.

2/17/2024 20
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* horizontal pipe system:
* Pipelines are drilled horizontally and connected to the heat pump

* lower depth

* Requires much more area
* less output power

* Climate dependent.

2/17/2024 21
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How 1t works?

Heating mode in winter Temperature, T

Cooling mode in summer

Ambient
temperature, Ty

»
Atmosphere
| . E—

High heat flux High heat flux

Low heat flux

Low heat flux /¢

-

BHE

Ambient temperature Ty

Cooled house - Temperature, T Atmosphere /

2/17/2024 22
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How 1t works?

* Heat pumps are used to force the heat transfer process whatever the
direction of natural heat flow through a secondary circuit.

* For cooling, the borehole 1s considered as a heat sink for heat disposal
in summer while 1t 1s considered as a heat source in winter for heating.

* In heat pumps, heat 1s exchanged between a working fluid and the

Fluid through the BE

2/17/2024

H connected to the heat pump.

* Heat pumps require external work (electrical power) to operate.

23
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Ground Source Heat pump (GSHP)

HEAT PUMP
COOLING CYCLE

4 73°C 39 I

.....
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* Heat pump has 4 main components:
* Compressor
* Evaporator
* Condenser
* Expansion valve.

12°C

— —

EVAPORATOR

{(Heat source)
(Heat sink)

EXPANSION

2 T CONDENSER

50°C

[THERMODI’MIM!C SYSTEM Il (interior) ]

[mfnmanrmmcsrsrm I (outdoor) j

e It can be used for either heating or cooling.

\_ 48°C -2°C A
KIGH PRESSURE LOW PRESSURE

WIGH TEMPERATURE LOW TEMPERATURE

| s PHASE Pom |
| - B | uowrus l
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AC unit Vs GSHP

HEAT PUMP

COOLING CYCLE

4 739 3¢ ™
13.5bar L

] 73°¢ (OMPRESSOR
—

na

(Heat sink)
EVAPORATOR

(Heat source)

CONDENSER

3. Condensor \/ S

Call EXPANSION
VALVE

[THERMODYNAMK SYSTEM Il (interior) )

1. Internal
Evaporator
Coil

[THERMODYNAMK SYSTEM | (outdoor) ]

L 48° -2 J

4. Expansion |
Valve

HIGH PRESSURE LOW PRESSURE
NIGH TEMPERATURE LOW TEMPERATURE

[ GASPHASE (APOR) |
—i

Hot Air Out
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Trench
Level

Bedrock

* Heat 1s mainly transferred through

{which is circulating
inside the collector loop) Heat transfer fluid returns

convection of heat carried by the water Ll
circulating into the system.

* Heat 1s also transferred by conduction from
the borehole wall to the grout and then the
pipeline wall.

Heat transfer fluid gradually
increases in temperature

Collector Loop installed to
final depth of borehole

Final Depth

U-Bend at final depth

2/17/2024 26
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* For convection:
* Q=h.AAT
* Q: convective power (W)
* A: area of heat transfer (m?)
* AT: temperature difference (°C)
e h: heat transfer coefficient (W/ m?.C).

2/17/2024 27
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 For conduction:
AT

° Q:}\AE

* Q: conduction transferred power (W)
* A: thermal conductivity (W/m.°C)
e A: area of heat transfer (m?)

* AT: temperature difference (°C)

* AX: depth or thickness ﬁ—;r(: gradient of temperature (°C/m)

2/17/2024 28
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Shallow geothermal engineering: overview
and applications

Lecture 2. Ground properties for geothermal exploitation
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Thermophysical properties

Heat flow
Thermal conductivity
Specific heat capacity

Thermal diffusivity
Ground temperature

Borehole thermal resistance
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Hydraulic properties

Permeability (hydraulic conductivity)
Groundwater flow.
Pressure drop meaning

Cairo University



Co-funded by the
Erasmus+ Programme
of the European Union

& GEB

Thermophysical properties

Faculty of Engineering

Cairo University

* Thermophysical properties of ground and other components such as
grout and pipeline walls are very important in geothermal energy
exploitation.

WINTER % 4. SUMMER gue

2/23/2024 ' o 3
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Conducting solid

e To calculate the heat flow (W/ m?), ;
the thermal conductivity (A) of the ;
ground should be measured.

Cold -y

1
i 'r : -— Hot
environment 1 i : 2

Heat flow q environment

* Thermal conductivity (A) differs
according to the rock/soil type.

2/23/2024 4
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Mediterranean Sea

2/23/2024 Heat flow map of Egypt, Ebarbary et al. 2018
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* Thermal conductivity represents the ability of a material to conduct

heat from a hotter side to a colder one.

Area (m2) —\

Thermal
energy *
(W)

Temperature 1 (K) ——

2/23/2024

Thermal
* conductivity
(W/(m.k))

Temperature 2 (K)

Q

AT
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* Thermal conductivity of the ground 1s important in transferrmg heat
to/ from the circulating fluid.

Caleulationof |
Grourd surfaze
Heal flux

Heat comvecton
Between ciculation
Watar and Pipe

Heat conduction
Between pe
and Greut

2/23/2024
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Table 1. Ranges of thermal properties of some minerals (Gil et al. 2020)

Mineral Thermal conductivity Heat capacity (C), KJ/
(A), W/m. °C Kg. °C

Quartz
Kaolinite
Smectite

Clay minerals
Calcite
Mica
Feldspar

7.69-7.70
2.60
1.90
1.70 - 5.95
3.25-3.90
0.70 - 2.32
1.68 —2.31

0.70 - 0.74
0.93
0.86

0.5-0.95

0.79 - 0.80

0.76 — 0.78

0.63 -0.75

Faculty of Engineering

Cairo University
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Table 2. Ranges of thermal properties of some rock types/soil (Gil et al. 2020)
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Rock Thermal conductivity | Heat capacity (C), KJ/
(M), W/m. °C Kg. °C

Granite 1.25-4.45 0.67-1.55
Limestone 0.62 - 6.26 0.82-1.72
Siltstone 0.61 -2.10 0.91 -1.52
Shale 0.55- 4.25 0.88 - 1.44
Soil 0.40 - 0.86 1.80 - 1.90
Clay 0.60 - 2.60 0.84 - 1.00
Basalt 1.50 - 2.50 0.84 - 1.28

2/23/2024 9
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* Thermal eonductivity (1) increases with temperature, and the
existence of water and quartz.

* Should be known for ground, grout, pipeline wall, and groundwater.
* Can be measured either in the lab or in field by TRT (thermal response test).

 ASTM D5334-22 standard is applied to test the soil and rock thermal
conductivity using a thermal needle probe.

2/23/2024 10
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* Heat capacity (C, J/kg.°C) represents the amount of energy required
to increase the temperature of 1 kg of a material 1°C.

* It represents the ability of a material to store energy.

* Heat capacity 1s an important parameter in heat transfer which
determines the amount of energy needed to heat or cool a material.

2/23/2024 11
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e Thermal diffusivity (a, m#/s) is expressed as the rate of heat
transfer via conduction.

Volumetric heat capacity (c, J/ m3.°C)

A
Thermal diffusivity (o, m?/s) =

c=C.p
p: density (kg/ m>)

2/23/2024 12



RERRl Co-funded by the
W Erasmus+ Programme
of the European Union

) GEB

Thermophysical properties

Faculty of Engineering

Cairo University

* For a BHE, Is it better to have a ground
with low or high heat capacity?

~ i /% ~
¢ ¢ '
e .)

2/23/2024 13
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Table 3. Ranges of thermal diffusivity of some soils

Soil type
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Dry clay
Wet clay
Dry silt
Wet silt
Dry gravel
Wet gravel

Dry sand
Wet sand

Thermal diffusivity

(o, m?/day)
0.02 -0.05
0.04 —0.07
0.02-0.05
0.04 —0.07
0.03 -0.03
0.04 —0.06
0.02 -0.05
0.07 - 0.15

Faculty of Engineering

Cairo University
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Table 4. Ranges of thermal diffusivity of some rock types

Rock type
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Claystone
Siltstone
Mudstone
Sandstone
Limestone
Shale
Basalt

Diorite

Thermal diffusivity

(o, m?/day)
0.05-0.12
0.05-0.12
0.05-0.12
0.09-0.15
0.08-0.14
0.06-0.11
0.05-0.08
0.06 - 0.09

Faculty of Engineering

Cairo University
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* Ground temperature should be measured
as 1t determines the range of applications,
the chosen heat pump, and the output
efficiency.

* A downhole temperature sensor 1s used
to measure the undisturbed ground
temperature (T} ) along the borehole

depth.

Downhole Ground temperature sensor

2/23/2024 16
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2013 RESULTS Temperature (°C)
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2/23/2024 Ground temperature vs depth, Aydin et al. 2015 17



Co-funded by the
Erasmus+ Programme
of the European Union

&) GEB

Thermophysical properties
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* The geothermal gradient (°C/m)
1S an important parameter to be
known.

* [t represents the rate of
temperature change with depth.

* More important for deep
resources.

16 16.5 17 17.5 18 185 19 18.5

The geothermal gradient in Croatia

2/23/2024 18
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* Borehole thermal resistance [R, |:

. 1Shcc)iuld be calculated to estimate the required depth to reach the required
oad.

* Describes the loss of temperature from the ground to the heat carrier fluid or vice
versa.

* A lower thermal borehole resistance always increases the efficiency of the BHE.

* Affected by:

* Borehole diameter Pipe size and configuration pipelines material
* Grouting The heat carrier fluid Laminar or turbulent flow

2/23/2024 19
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 Resistances in a BHE are the summation of obstacles facing conduction

and convection of heat transfer.

* ZR= Rground + Rground— grout
+ Rgrout—pipeline wall

T Rpipeline wall —fluid + Rfluids

Borehole resistance to heat transfer

2/23/2024 20
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Thermophysical properties

* Borehole thermal resistance [Ry, |:

e It lowers the heat transfer and therefore the
output power.

2/23/2024
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Fluid
Pipe wall

Filling 3

Borehole wall

Borehole resistance to heat transfer

21
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* Through a Thermal Response Test (TRT)

on a BHE, one can directly get: |
: |

[
l"..r.-J-.- -
“ |

* Thermal conduct1v1ty (k) ;
* Borehole thermal resmtanm b)

 Undisturbed ground temperature (Té' ™

* A detailed explanation of TRT will be

discussed 1n an upcoming lecture.
TRT testing machine

2/23/2024
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Circulation pump

Flowmeter

Borehole heat exchanger
and collector

Schematic drawing for TRT

22
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Water

* Hydraulic/hydrogeological properties are
very important in shallow geothermal
energy exploitation, especially in open- .. A i
loop systems. acruaLpator

VWATER MOLECULE

* Permeability plays a vital role in open
loop systems where water 1s pumped out -
through a production well and injected o
again through an injection well. erombwaTER oW plREeTIo

Grain size effect on permeability

2/23/2024 23
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Hydraulic properties
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—
I—_. geming

~ Unit

Heat pump|—

Ground level

Rest water level

Groundwater flow direction and position of production and injection wells

2/23/2024 24
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Hydraulic properties
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* Groundwater flow direction 1s not important for open-loop only but
also for the closed-loop system.

* To avoid thermal interference between different BHEs, the Boreholes
are drilled 1n a perpendicular line to the groundwater flow direction.

2/23/2024 25
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Hydraulic properties
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e The pumping/flow rate (m3 /h) which is affected by the pressure
drop 1n pipelines.

* Q=m.C.AT
* QQ: heat transferred (W)
* m: mass flow rate (Kg/s)
* C: specific heat (J/kg.°C)
* AT: Temperature difference (°C).

2/23/2024 26
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Hydraulic properties
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* The pressure drop should be calculated to L : ]ISHI:
determine the circulation pump

specification.

Pressure drop in pipes

2/23/2024 27
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Shallow geothermal engineering: overview
and applications

Lecture 3. Heat exchangers- part 1
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Introduction

Faculty of Engineering

Cairo University

 Heat exchangers are used to exchange the heat between two fluids one
of them iIs hot and the other one is cold without direct contact between
them.

* In shallow geothermal resources, where the fluid temperature is not
high enough, heat Is exchanged via heat pumps.

3/3/2024 3
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Shallow geothermal exploitation systems
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Closed Loop Open Loop

* Closed loop system
* Open loop system

3/3/2024
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Shallow geothermal exploitation systems

CLOSED LOOP SYSTEMS
« Vertical borehole heat : T
exchanger (BHE) r ==== r

 Horizontal pipelines.

Faculty of Engineering
Cairo University

* 1- Closed loop system:

Underground pipes circulate liguid

that is heated or cooled by the
earth. The liquid is then transferred
via an exchanger to heat or cool
the structure.

3/3/2024
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Shallow geothermal exploitation systems

* Vertical borehole heat exchanger (BHE):

* |Is the most efficient technology nowadays.

Heat transfer is carried out mainly via conduction.
Requires lower space

Reach higher depth.

Independent of weather.

3/3/2024 6
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Shallow geothermal exploitation systems

WINTER g . SUMMER B
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Shallow geothermal exploitation systems
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Single U Theoretical
3/3/2024 installation

O
o
c
=3
®
c

installation
|

Real ‘




RERRl Co-funded by the
W Crasmus+ Programme
of the European Union

) GEB

Shallow geothermal exploitation systems
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* \ertical borehole heat exchanger (BHE):

« A BHE is made by a vertical drilling. Inside the hole, two or more pipes are
Installed with a U-bend at the bottom.

* Borehole Diameter 127 -200 mm.
 Pipe Diameter 32- 50 mm.

 Grouting fills the annulus between pipelines starting from bottom to top using
dedicated pipe.

3/3/2024 9
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* \ertical borehole heat exchanger (BHE):

 Heating mode:

 The circulating fluid is colder than surroundings and absorbs heat from the
ground.

 Cooling mode:

 The circulating fluid is hotter than surroundings and releases heat to the
ground

3/3/2024 10
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* \ertical borehole heat exchanger (BHE):

12

I I
X l
(L) » X

rS— +

R T

Geo Probe Geo Probe

Excavation Excavation
— Inlet Inlet

Outlet m M Outlet
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* \ertical borehole heat exchanger (BHE):

* Inside the pipe a thermovector fluid flows, which heats up or cools down
depending on the system use

 The higher the temperature difference between inlet and outlet, the higher
exploited power.

w1
R

|
v W
-~ L gt {
a=01 (W " | ¢
N

.

1

-

qgeo (W/m2)

’ T ! |
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* \ertical borehole heat exchanger (BHE):

 Heat transfers modes in geothermal borehole :
 Conduction: between ground and the geothermal pipes.
 Convection: of the fluid inside pipes.
 Advection: due to the ground water flow.

3/3/2024 13
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* \ertical borehole heat exchanger (BHE):

* The basis model is a conductive model.
* Heat moving in radial direction from
fluid to the ground or vice versa.

 All materials crossed by heat are represented
by thermal resistances and thermal capacities

In series (pipe, grouting, ground).

» The geological layer is represented in parallel.
the usual model is called Delta Circuit

3/3/2024
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* Vertical borehole heat exchanger (BHE):

 Coaxial pipes
» Advantage:
* possibility or insulating
the return pipe.

 Disadvantage: | Il! l Geo Prove

; . Excavation
* big external diameter (63 Inket
Outlet
mm or more).
Difficult to be at high depth

3/3/2024
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* Resistances of coaxial pipes

| e
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Shallow geothermal exploitation systems

 Horizontal borehole heat exchanger:

3/3/2024

« Shallow pipelines.
 Lower drilling cost.
 Climate dependent.
* less efficient.

il
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4
 Horizontal borehole heat exchanger: X
— ))
=1
—— Geo Probe
Trench installation Bench installation  yeaton
— QOutlet
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Shallow geothermal exploitation systems

 Spiral BHE:
* Increase surface of heat
transfer.
 Increase heat transfer
coefficient without
heat drop increase.

3/3/2024
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Shallow geothermal exploitation systems

* Piles Geo-exchangers:

* Implemented during construction into the
butlding piles

« Canreach 10-20 m.
* Low output power.

« Canworkina h?/brid system to cover the
required thermal load.

3/3/2024
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 2- Open loop system:

open loop system

3/3/2024 well pond/ lake 21
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* Open loop system:

« Ground water is extracted through a production well until reaching the heat
pump.

Then, water is re-injected into the ground through an injection well.

The distance between both wells must be well calculated.

Higher output power than BHEs.

Higher costs for pumping out.

Water quality: filters must be applied.

3/3/2024 22
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 Both closed loop and open loop systems are connected to the heat
pump where heat exchange occurs.

* In closed loop systems, heat transfers between ground and fluid
Into the borehole through the BHES and then in the heat pump.

* In open loop systems, heat transfer occurs in the heat pump.

3/3/2024 23
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« Heat pumps absorb heat from a source and transfer it to another
source with external work exerted.

HEAT PUMP

| '
G Othermal

-

3/18/2024
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« Heat pumps can be classified according to the source from which
heat Is extracted:

« Air-air (A-A)

» Air-water (A-W)

 Water-water (W-W, ground source heat pump).
« Water-air (W-A)

. It;Iear\]t pumps can be used for heating only or cooling only or
otn.

3/18/2024 3
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HEAT PUMP
T “Compressor
0°C A 2 . 35%
—0 —/ ; d IR
S(.)UTC.G Te Tc : Load - »
LG 8°C  40°C | circuit @
| L
-3 °C L N
g N 3 /l @ <
Expansion valve y BUILDING
= ., e S eSS e S Ta=22°C
Evaporator Condenser
gl
1

&
-
Tt=15°C Ground source heat pump (GSHP)

3/18/2024 4
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Heat exchange in Heat Pumps (w-w)- heating
process

« Water with glycol (antifreeze)
circulates (by pumps) into the pipes buried o3¢/ AFEEEIIR v
Into the ground. system DHW
 Water has lower temperature
than the surrounding ground, So heat
transfers from ground to water.
 This water transfers its gained heat to
a refrigerant circulating into the evaporator
until this refrigerant turns into vapor (boil).

Return of water
from the emission /
DHW system

Water / glycol to
collection system

Expansion valve

3/18/2024 5
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Heat exchange in Heat Pumps (w-w)- heating
process

 Then, this refrigerant, in form of vapor, goes to the compressor
where pressure and temperature of increases.

« After that, the compressed fluid goes to the condenser where it Is
cooled and condensed giving its heat to the water in the emission
system (fan coils, radiators, underfloor heating/cooling) .

* This water Is distributed into the building/facility which need to be
heated/cooled.

3/18/2024 6
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Heat exchange in Heat Pumps (w-w)- heating

Process

 The condensed refrigerant,

which had lost i1ts heat In the condenser,

passes the expansion valve, where

pressure and temperature decreases.
* Finally, this refrigerant can gain heat agal

from the water with glycol coming

from the (BHE) and starts new cycle.

3/18/2024
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Heating + DHW Cooling + DHW

DHW outlet

>

A

"l v SIMULTANEOQUS HEAT
/ COLD AND DHW /
POOL

v' PERFORMANCE
INCREASE UP TO
200%

nnnnnnnn

DHW: Domestic Hot Water
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Heating efficiency of heat pumps
« Coefficient of performance (COP): sl :}zzﬂ;ch

output power P
e COP=- p = —H
input electrical power Pg

» Seasonal Coefficient of performance (SCOP):
* Represented in certain time (energy form

30°C

Qc @35“C

not power) 5 9C Qc 2°C
output Ener E
¢ SCOP= ————T9Y - A S AVAV AL e
input electrical Energy Eg oo &

GROUND, Tt = 14 °C

3/18/2024 9
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Efficiency energy ratio (EER):

output power P
+  EER= = F = £

input electrical power Pg

Seasonal EER(SEER):
* Represented in certain time (energy form

not power)
output Ener E
. SEER=- Py ¢
input electrical Energy Eg

Seasonal performance factor (SPF): Global factor
. SPF=ZcCH

Eg

Faculty of Engineering

Cairo University
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Electrical Semmuimy

consumption 20%

4 KN
V[ FREE -
Heating, cooling
Free energy extracted from the and DHW 100%

ground, from the air, etc. up to 80%

EFICCIENCY = Useful power / Electrical consumption = 5/1 =5

3/18/2024 11
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27N
GSHP
N S
27N 27N 27N
Surface Water Heat Ground water Heat Ground Coupled
Pumps (SWHP) Pumps (GWHP) Heat Pump (GCHP)
N S N S N S

3/18/2024
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» Surface Water Heat Pump (SWHP):

» Depends on surface water in its working
cycle.

* Is not suitable in absence of surface water or
In freezing areas.

3/18/2024 13
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Types of GSHP

« Ground Water Heat Pump
(GWHP):

« Extracts the ground water through a
production and reinject water again
through another injection well.

 Depends on the hydraulic
properties of  the ground
(permeability,..).

3/18/2024
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Heat circulation with under

Reinjection
well

Injection | || o5 o
well AT TR N S

.....

e SUfficient minimum |
distance
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* Ground Coupled Heat Pump (GCHP)

« Heat Is exchanged between the ground and the
fluid (in BHE) via conduction.

* Depends on the thermal properties of the ground
and the fluid such as thermal conductivity and
ground temperature.

3/18/2024 15
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* Firstly, the thermal load of the building is determined.

 The conditions that the heat pump will work within must be
determined; for example temperature of the ground and the
required temperature of the building or DHW.

 Each heat pump model has an output power range.

3/18/2024 16
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Selection of GSHP

« Example of range of
temperature for a HP.

* For example, water at
temperature -25 results
DHW at 10 -40

DHW / Heating / Dissipation output temperature (°C)

3/18/2024
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Collection / Cooling output temperature (°C)
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« Calculation of the required heat pump power depends on the
following equation

e Q=m.C.AT
* m: Is determined according to the type and conditions of facility.

3/18/2024 18
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Selection of GSHP For DHW =~ st :

Hospitals and clinics.

Ambulatory and health center. 41

HD’tEI & & & k& ﬁg

. Hﬂ.tel *k k& 55

 According to the EU standards: Hotel *** 41
Hotel/hostel **. 34

Camping site. 21

Sing'e house: Hostel/pension™. 28
Residence. 4

Penitentiary center. 28
N° Bedrooms 1 2 3 4 5 6 >7 Hostel. 24
N° of persons 15 3 A 5 6 6 7 Collective chan_ging rooms/showers. 21
School without shower. 4

School with shower. 21

0 i ) ] ) ) _ Barracks. 28
N° of buildings <3 4-10 11-20  21-50 51-75 76-100 =101 Factories and workshops. Y
Simultaneity Offices. 2
coefficient 1 095 0.3 0.85 038 0.75 0.7 Gymnasiums. 21
Restaurants. 8

Cafeterias. 1

3/18/2024 19
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Energy rating of the house

ENENEIEN

Passive Housing 10
Low-energy building 40 Underfloor heating  35W/m2  40W/m2  45Wim? 55 W/m?
Recent construction (as of 2005) 50 ,
Fan-coils 60W/m2  66W/m2  75W/m2 90 W/m?
Old construction (prior to 2005) 80
Uninsulated construction 100 Low temperaiure 50Wim2  60W/m?2  70W/m? 80 W/m?

radiators

3/18/2024 20
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« If you have an uninsulated area of 160 m? classified as a low
energy building (thermal load 100 W/ m#) , a power of 100*160
=16000 W of heating is required.

* You have to look for a heat pump that can provide this amount of
Kilo Watts at the available ground temperatures.

 The following information represents a heat pump from EcoForest
(ecoGEO + B/C 5-22).

3/18/2024 21
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| —BOW35 —B5W35 —B10W35 —B15W35 | | —BOW55 —B5W55 — B10W55 —B15W55 |
25,00 25,00
/ L~
S 20,00 ' // £ 2000 /
Ez 3
3 / / 3
3 E
e e — 15,00
— 15,00 5 19
: ~ :
: / E
o o]
£ 1000 » £ 1000
% oz %
5,00 / 5,00
0,00
0,00 10 20 30 40 50 60 70 80 90 100
10 20 30 40 50 80 70 80 90 100
Compressor speed (%) Compressor speed (%)
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 As shown from the previous slide, working with a brine of higher
temperature can reduce the required work of the compressor.

| ——BOW35 B5W35 B10W35 ——B15W35 |

8,00
g
= 6,00
=
g
g
5 4
=
Q
i
w 200
g
8
w000

0 20 30 40 50 &0 70 80 80 100
3/18/2024 Compressor speed (%) 23
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&0

55 /
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Shallow geothermal engineering: overview
and applications

Lecture 5. Design of shallow geothermal systems- partl
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* Design of Closed-loop systems
* Design of vertical systems.
* Worked Example with an analytical solution.

3/23/2024 2
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‘\ !\

N

Determine : . * Techno-economical

the S;T(ﬁ?;fig;fgerseg;s Heat comparison between N ~ Analysis ti/kt)mh of max tﬁimp
building Op 1 Yd | heat pumps vs other of at requires cooling.
ol (Open vs closed). 0 alternatives. === = Month of min temp

load Initial costs & output. that requires heating .

» CO2, energy saved.

* Based on: e.g.
* Ground properties
* Hydrological data

3/23/2024 3
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Step 1: Building thermal load determination

Building load

15,000

10.000

5.000
% o | il -Iieaﬁpg
w Lo o 4o 5 ng €$? o Yﬁﬁ e o » Cooling

s'«:-ﬂﬁ? Hk& F R | $ g_?é’ Qé“ap dﬁ'

10.000

15.000

Monthly Energy Consumption

3/23/2024
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Step 1: Building thermal load determination

3/23/2024 5
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Step 2: calculation of peak values of power
for heating and cooling

* Calculate the peak heating power for the month of Min temperature.

* Calculate the peak cooling power for the month of Max temperature.

3/23/2024 6
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Step 2: calculation of peak values of power
for heating/ Cooling

3/23/2024

Heat Sources in a Building

| : Thermal load
Type of construction (Wim2)

Passive Housing 10
Low-energy building 40
Recent construction (as of 2005) 50
Old construction (prior to 2005) 80
Uninsulated construction 100

Building thermal load according to building construction type, after ecoForest Co.

7
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Step 2: calculation of peak values of power for DHW

Single house 28

Hospitals and clinics. 55

Ambulatory and health center. 41

Hotel ***** 69

. Hotel **** 55
Single house: Hotel *** a
Hotel/hostel **. 34

Camping site. 21

N° BEdl‘ﬁﬂI’l‘lS 1 2 3 4 5 b >7 Hgsteh‘pensfon*_ 78
N° of persons 1,5 3 4 5 6 6 7 Bl 4]
Penitentiary center. 28

Hostel. 24

Collective changing rooms/showers. 21

N° of buildings <3 4-10 11-20 21-50 51-75 76-100 >101 School without shower. 4
simultanei School with shower. 21
Imultanetty 1 095 09 08 08 075 07 Barracks. 28
coefficient Factories and workshops. 21
Offices. 2

Gymnasiums. 21

Restaurants. 8

Cafeterias. 1

DHW needs / person According to building type, ecoForest Co.
3/23/2024 8
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Step 2: calculation of peak values of power
for Pools

. F 000l Water temperature
e of poo
t

With cover 100 W/m? 150 Wim?2 200 W/m?

With cover and wind g;g?
protected

200Wim2  400Wim2 600 Wim?

Without cover and
partially exposed to 300W/m2  500W/m2 700 W/m?
wind

Without cover and

2 2 7
exposed to wind 450 Wim? - 800 W/m? 1000 W/m

Temperatura del agua
24 °C

Heating load needs for pool, ecoForest Co.

3/23/2024 9
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Step 3: Min and Max temperature required by
the end user

* Determination of T;,, & T, for heating.
* Determination of T}, & T, for cooling.

* Choose a suitable heat pump.
* COP/EER

3/23/2024 10
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Step 3: Min and Max temperature required by
the end user Cont.

Cooling (%)

Cp.m
p
* Tmax: the max entering water temperature (EWT).

* Tout BH = Tinmax —

Max Output power

« COP=

electrical power consumed by the compressor of a heat pump

3/23/2024 11
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Step 3: Min and Max temperature required by
the end user Cont.

* Qground =P cooling + F, compressor

1 COP+1
— cooling(l_l_COP) — Pcooling( COP )
. - - 1
Qground — PHeating R Pcompressor — PHeating (I_COP)

COP-1
:PHeating (W)

3/23/2024 12
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Step 3: Min and Max temperature required by
the end user Cont.

TECHNICAL DATA SHEETS

* Choice of a suitable Heat pump:

Heat pumps
* Based on the max required power. ecoGEO*
ecoGEO* & AU
* Based on the temperature range that a heat eCoAIR"

pump can work within.

L emE

ecoForest Technical Data Sheet.
3/23/2024 13
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Step 4: Evaluation of COP/EER for each
month

* The system’s efficiency .

changes monthly according to
the air temperature in each

month.
. COP
3,00 | ‘ st

Monthly efficiency of the system
3/23/2024 14
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Step 4: Evaluation of COP & electrical power
consumption

 After determining the demand and knowing the working temperatures, a heat
pump that can provide the required thermal power is chosen.

12 o1 8 T T T T T T 1
11 = —Source temp -3/0 °C | 7.5 Source temp -3/0 °C
-~ -~
1D — -_-.Saurce temp 2}'5 ﬂc - - .‘-'_. 'r'//f E ; o - SOIJFCE tEI'I'Ip EIIIE I?C
= 9 AT + 6 o
— -Source temp 710 °C |- - < i — =Source temp 7/10°C
E a8 ," -2 /"/ o 6 ”~ —
:,5_, . = 8 55 —_— -+ 1
E - < ..,." 5 . - huinies it 1 ﬂ_n_
= e - = .-"’f f "" ™= [
o R ‘_‘_..-"" 45 7> = — ==
2 i’ ey 4 f,"‘ e —
g Kol 3517
* T / - :
? ;:ff“ Heating temp 30/35°C [ 2 i Heating terhp 30/35°C
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Step 4: Evaluation of COP & electrical power
consumption Cont.

| [ [ T [ 1
Source temp -3/0 °C /
25 [ "
E ====Source temp 2/5 °C /
= 2 |"|— =Source temp 7/10°C /
2
£ 15
E @ 7
8 e
w ,.-"'"#
Heating temp 30/35°C
0.5 [ -] Shallis

10 15 20 25 30 35 40 4@0 55 60 65 70 75 80 85 90 95100
Compressor Speed (%)

'
Per = 1,2 kW
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Step 4: Evaluation of COP & electrical power
consumption Cont.

— . —B3W7  —BasWi2 —BIWIS |
g A A7
* The same concept for cooling, i Y it
choose the source and ///

distribution temperatures //
curve, then get the same | 2

previous data.

3/23/2024 17
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Step 5: Geological study

* Determination of lithology.
* Determination of thermal properties of each layer.

* Determination of ground temperature.

* Presence of groundwater flow.

3/23/2024 18
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Step 5: Geological study Cont.

* Determination of lithology.
* Can be carried out through logging or geophysical survey

* Determination of thermal properties of each layer.

* Thermal conductivity of the ground can be obtained through thermal response
test (TRT) or in laboratories.

* Ground temperature T is obtained through the TRT or field
measurements.

3/23/2024 19
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* Thermal resistance represents the obstacles that resist and reduce the
efficiency of heat transfer.

* Ground material

* Grouting material

* Pipelines material

* The circulating fluid.

3/23/2024 20
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* Also, thermal resistances can be calculated through TRT by comparing
the fluid temperatures at inlet and outlet due to constant power
injection into a borehole.

3/23/2024 21
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Step 7: Preliminary Setting the penalty
temperature

* To determine when the unbalance between injection and extraction occurs.

* This unbalance affects the source temperature over the lifetime.

3/23/2024 22
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Step 8: Calculations of BHE dimensions for
heating/cooling

* Calculating of total length of BHE.
* Calculating the number of boreholes and depth of each one.

* Max depth of borehole should not exceed 100 m (preferable).

3/23/2024 23
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Step 8: Calculations of BHE dimensions for
heating/cooling

* Another quick solution for (Not for commercial use):

* Length of borehole = o (W‘)/,,
heat flow (E)

* Ground material has a range of Heat flow (W/m), we calculate the length of
borehole for both edges.

* Best case scenario (highest value) and worst-case scenario ( lowest value).

3/23/2024 24
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Step 8: Calculations of BHE dimensions for

3/23/2024

The heat extraction rate (W/m) for different ground layers, after ecoForest

Clay, loams

Sandstone
Basalt
Limestone

Granite

Gravel, dry sand
Gravel, saturated sand

Gravel and sand with high

water flow

Gneis

heating/cooling

Specific extraction capacity

1800 hfyear
35-50 W/m
65-80 W/m
40-65 W/m
55-70 W/m
65-85W/m
< 25Wim

65-80 W/m

80-100 W/m

70-85W/m

2400 hiyear

30-40 W/m
55-70 W/m
35-55 W/m
45-60 W/m
55-70 W/m
< 20 W/m
55-65 W/m

80-100 W/m

60-70 W/m

25



RERRl Co-funded by the
W Erasmus+ Programme
of the European Union

) GEB

e

Faculty of Engineering

Cairo University

Worked Example

* A building with area =130 m?.

* Ground temperature 22.75 °C.

 peak heating load 12.5 KW.

 peak cooling load 15 KW,

* The heating thermal loads 6000 KW.h/yr.

* Cooling thermal loads 10400 KW.h/yr.

* The electricity consumption for heating: 3.2 KW.

* The electricity consumption for cooling 4.1 KW.
* Flow 3300 Littre/hr.

3/23/2024 26
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Worked Example

* For Cooling:

Peak cooling load (Pcooling)

* EER (Energy Efficiency ratio) =

Electrical power

EER+1
coollng(l_'_ )_ coollng( FER )

* Qground — Pcooling + Pcompressor
* Qground: power to be injected into the ground durmg cooling.

* Qgrouna=m. C, . AT

3/23/2024 27
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Worked Example

* For Cooling:

Peak cooling load 15000
+ EER= , g = = 3.6
Electrical power consumed by compressor 4100
1 EER+1
* Qground — Pcooling + Pcompressor — cooling(l_'_EER) — Pcooling( FER )
=19.16 KW.

3/23/2024 28
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AT= Q

Cp m

AT= Ty gy — Tout BH

p COP+1
. Cool (W) . 19.16 . o
* Tout BH — Tmax T = 35- 3300 — 30°C
Cp.m 4.180%
3600

* Borehole Length (L):

p COP+1
.l o l(—COP )-(RP+Rs-F) &T __ Tmax+Toyut BH

cooling Avg —

TAvg _Tground

3/23/2024

=32.5°C
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Worked Example

* Rp: thermal resistance of pipe
* R;:thermal resistamce of soil
* F:cooling factor (proportion of cooling months/year)

3/23/2024 30
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Worked Example

 19160%0.145
(32.5 —22.75)

= 284.94m

* So we can use 3 BH with depth 95 m for each

* In case of unbalance between heating & cooling loads, Factor B 1s introduced
* Low=L*Fg =285%1.2=350m

* So 4 BH with depth 87 m for each 1s drilled.
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Worked Example

2.Design methods

* There are other analytical

SOlUtlonS ’ The ASHRAE method is an analytical one. The sizing equations are basically obtained by solving for the total
BHE length L the following steady state equation for the heat transfer in the ground:

2.1. ASHRAE method

* ¢.g. to solve twice for heating
and cooling separately.

(Tg_Tf)

0 =1 )

where Q is the heat rate, T, the undisturbed ground temperature, Trthe average fluid temperature and R is the
BHE thermal resistance. The total length for the heating (Ly) and the cooling (L.) mode are calculated separately
according to equations (2) and (3) respectively:

r
L. — QaRgaJngzhp(Rb+PLFm,h,DRgm+Rngsc)
h — T Trin=Tfout _r
g 2

(2)

P

* You must choose the longer
borehole solution such as in . .
Ashrae method.

Full citation: M. Staiti and A. Angelotti, “Design of borehole heat exchangers for ground source heat
pumps: A comparison between two methods,” Energy Procedia, vol. 78, pp. 11471152, 2015, doi:
10.1016/j.egypro.2015.11.078.
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Shallow geothermal engineering: overview
and applications

Lecture 6. Design of shallow geothermal systems- part 2
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* Tutorial on EED designing tool (Software).
* Vertical vs Horizontal heat exchangers.

* Horizontal ground heat exchangers.

* Tutorial on GHX toolbox (Spreadsheet).

* Open loop systems

* How are parts connected together?

* Circulating fluid properties.

3/30/2024 2
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Tutorial on EED designing tool (Software) sy

", Earth Energy Designer 4.20 UNTITLED.DAT  License for @eng.cu.edu.eg
File Input Costdata Solve Output Settings Info About

Earth Energy Designer - EED Version: 4.20 (April 11, 2019)

* Begin using the software >~ B
following the instructor’s

} A ' Update manual v4
t Manual v3
S eps . Tutorial

FAQ:s (frequently asked gquestions)
Yersion update info (See Appendix A)

Optional "EED on the wek" manual

3/30/2024
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o 0 Jo o o
< D -
RN 38 g=
- @ : @
= Fe—
N NNAANANNANANNNANNNNNNNNN — =
* Horizontal systems require a 72> 5 5 )
VY yyYyi
_ o larger ground area and produce LIS
H lower efficiency than vertical I
i systems. C0000)) @DD)})}))}@)
* Less expensive. ©

Vertical borehole heat exchanger Horizontal Ground heat exchanger types

3/30/2024 4
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Atwany et al. 2020
3/30/2024 Horizontal Ground Heat Exchanger (GHX) 5
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* The efficiency of a Ground Heat Exchanger (GHX) can be calculated
according to the relationship:

E_Tin —Tout

* When connected to heat pump system:

Pout

PComp"'PCir.pump"'Pfan

3/30/2024 6
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Horizontal ground heat exchangers
Calculations of Demand

* Power can be simply estimated with the same methodology of vertical
BHEs.
 Power (W) = thermal load (W/ m? )* building Area (m?).

* Area of extraction, pipe spacing, and pipe size are estimated
according to the soil type.

3/30/2024 7
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Horizontal ground heat exchangers

COP+1 .
. ngun 1= P.ootin g(—cap ) for cooling mode.
COP—1 .
* Qgrouna = Pheatin g(co—p) for heating mode.

Q ground (W)

Extraction Capacity (%)

» The extraction area (m?)=

3/30/2024 ¢
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Soil type Placement factor Extraction capacity

Cohesive soil, residual

2 2
moisture 50 m¥/kW 20 W/m
Dry, non-cohesive soil 75 m2/kW 13,5 W/m?
Cohesive, wet soll 25 m2/kW 40 W/m?
Sand saturated with 20 m2/kW 20-50 W/m?

water, gravel

Determination of the extraction area, ecoForest Co.

3/30/2024
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Calculations of extraction area
* Heat Capacity of GHX:
Q (W) =mC,AT
AT = T;, — T,y 1n cooling mode
AT =T,,; -T;;, 1n heating mode
i

m': mass flow rate (Kg/s) 2hER | " e

Normal soil 0,7 DA 32
Cp: 4187 J/Kg.k for water T 0.8 DA 40

3/30/2024 10
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Select An Option

* Begin using the il st o

Line Source Model: () Line Source (SI Units) {"» Line Source (IP Units)

Spre adShe et fOllOWlng the Thermal Resistance Calculation: Vertical Borehole Heat Exchanger (7 Single u-tube (" Double u-tube ("3 Concentric Pipe

. b Horizontal Trench Heat Exchanger () Two-Pipe Trench () Four-Pipe Trench SicPipeTrench

1nstructor’s steps. -~ f ! O sixripeTen
Pressure Drop Calculations in Piping Systems: (_ Pipe Pressure Drop

> START  HorizontalGHX ar

3/30/2024 1
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Design of Open loop systems
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Open loop systems

3/30/2024 13
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* In open-loop systems, the main heat transfer does not occur 1n the
pipelines, but in the heat pump 1itself.

* At least one extraction well and one injection well.

3/30/2024 14
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Calculations of water flow
¢ Qground (W):meAT

* For groundwater:

. _ J o
Cp = 4187 ¢ & AT may be set as 3°C

* Flow rate of groundwater through the ground heat exchanger

Power (W)

(L/sec) = c, AT

3/30/2024 15
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How are parts connected together?
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How are parts connected together?

After designing the borehole number and dimensions, and the heat
pump capacity, all parts are connected to act in an integrated system.

3/30/2024 17
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How are parts connected together?

3/30/2024 18
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How are parts connected together?

CC

comb

one inlet and one out

3/30/2024 19
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How are parts connected together?

Heat Pump

2 = -—:

T
Production well L 5
_______________ B || AT =~
Water pump :
— - e A -
" £ Ria

Reinjection well =-15m

3/30/2024 20
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How are parts connected together?

Heat Pump

Heat is transfarred
Increasing the pressure to the building's
ralses the vapour temperature

The ground loop transfers heat
to a working fluid in the heat pump

Distribution
System
The distribution system can
be gither underfloor heating,
radiators or forced-air system

The working fluid expands
causing it to cool

PARTS OF A
GEOTHERMAL SYSTEM

A natwork of pipes is
buried in the ground or
immersed in a water source

Distribution System

Geothermal Heat Pump

Geothermal Loop

3/30/2024 Schemes for a GSHP system for heating/cooling 21
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How are parts connected together?

4 pipe buffer

Direct connection

Heat pump + Buffer tank Indoor heat pump and tanks

3/30/2024 22
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Circulating Fluid properties

* For BHESs, water freezes at 0 °C. In order to avoid freezing, glycol
1s added to water as an antifreeze to lower the freezing temperature.

* Adding Glycol enhances the properties of 1”;*; -
the used brine. 20% 8
30% -14

40% -22

50% -34

60% -48

100% -39

3/30/2024 23
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Circulating Fluid properties

Flow (Is) Flow (Is)
01 02 03 04 05 06 07 08 09 10 ot 02 03 04 05 06 07 08 09 10
10000 10000
—15% 2UBHE —15% 2UBHE
9000 —20% 2UBHE Ethylene glycol 0000 | — 20% 2UBHE Propylene glycol
—25% 2UBHE —25% 2UBHE
— PR 0,
8000 30% 2UBHE 8000 30% 2UBHE
—15% CX63-32 —15% CX63-32
—20% CX63-32 —20% CX63-32
7000 7000
—25% CX63-32 —25% CX63-32
o —30% CX63-32 © —30% CX63-32
2 6000 £ 6000
3 15% CX63-40 5 15% CX63-40
S —20% CX63-40 e —20% CX63-40
o 5000 'S 5000
s, —25% CX63-40 < —25% CX63-40
Q@ L]
& x —30% CX63-40

—30% CX63-40

4000 4000

3000 3000

2000 2000

1000 1000

3/30/2024 0 0 24
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Circulating Fluid properties

0,21 0,21
0,20 0,20
0,19 0,19
0,18 0,18

g 0,17 \ E 0,17 \
0,16 0,16

E E

E 0,15 E 0,15

2 0,14 2 0,14

& &

2 0,13 E 0,13

E 012 E o012

£ £

2 011 2 01

[=] [=]

© ©

S 010 S 010

o [aa]
0,09 0,09
0,08 0,08
0,07 0,07
0,06 0,06
0,05 0,05

01 02 03 04 05 06 07 08 09 10 o1 02 03 04 05 06 07 08 09 10

Flow (I/s) Flow (I/s)
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Thermal Response Test

* A Thermal Response Test (TRT) Is carried out to obtain accurate
values of these properties such as:

* Thermal conductivity

 Undisturbed ground temperature (average ground temperature over BHE
depth).

4/19/2024 3
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Thermal Response Test

 Lower thermal resistances means higher heat transfer efficiency.

* |t depends on:
* borehole diameter
* pipe size and configuration
° p|pe materia' mﬁ.lfffﬂﬁgn pﬁgr:ﬁ:nﬂrﬂfﬂ;
e grouting
 heat carrier fluid
* laminar/turbulent flow

CONFIGURATICN C
Fipes against borehole wall

4/19/2024 4



§ Co-funded by the
Erasmus+ Programme

of the European Union

Faculty of Engineering

Cairo University

Thermal Response Test

Test
apparatus | Data logger measuring
Insulated Heating Flow controller inlet & outlet temperature,
pipes = element + (3.5gpmmax.) Manual air bleed tube current, voltage
I | Wall meter
= — Circulating pump +
) Flow meter
< = Temperature
Sensors
] —
T Grout Fluid outlet port —
< —
1 '
T, H ] "~ Borehole Pump and heating Air vent
wall element electrical
| N controls
q Fluid inlet port —

= F—_h - :

] -

—__ U-tube
| — BHE
Fill port Circulator pump  In-line water heating element

(Armstrong Astro 30) (3500 W @ 220 V)

4/19/2024 5
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Test
apparatus
Insulated

Thermal Response Testing (TRT) .........ﬁ:ﬁ.fﬁ.;.ﬁmiﬁ.‘......;_... | z\'flnf - 'n!;tzirgf UEEE:T:E ring
[ The test procedure involves application of a constant G| T P
heat rate to the fluid flowing through a BHE. :u : -
O A data logger records the inlet and outlet fluid o |
temperatures and some tests are also designed to NI Irwa"
record fluid flow rate and power added to the fluid I |
stream. | J} U-tube
O The heat rejection or extraction rate must be known in — 4V
order to evaluate the test data.
[ Research suggests that test duration should be of the O

order of 40 h.
 An accurate measurement of the average subsurface
Earth temperature prior to the start of the test must be

element electrical
controls

conducted. it represents the initial condition of the e #
subsurface temperature field.

1 — Air vent

/ |
Fill port Circulator pump  In-line water heating element
(Armstrong Astro 30) (3500 W @ 220 V)
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Thermal Response Test

o Undisturbed ground temperature

(i) using a temperature probe to measure the temperature of the
standing fluid in the BHE with depth

And/or

(i) circulating the BHE fluid with the test pump with no heat
addition, and recording the stabilized fluid temperature.

* Thermo-phreatimeter is used to measure the ground temperature
before carrying out TRT.

« Enough duration between completion of BHE and TRT onset.

4/19/2024 7
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Thermal Response Test

210083 1/4151
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Thermal Response Test

Temperature Sensors  Circulation Expansion Header
pump vessel tank

\ o

T8O o

- pmerme— =
X1
™~

A constant heat injection rate will be oyl
provided by a heater.

* The thermal energy is transported with
the water injected into the ground through
circulating pumps.

 For 100 m borehole depth, 50 W/m
heat injection rate, the constant injected
power is S5SKW.

4/19/2024 N 9
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Thermal Response Test

Temperature Sensors Ciroulatlon Expansion Header
vessel 1ank

T2~TRT leaving fluid

T1-=TRT entering flud
T3 -Extemal air l

Presm CH“‘

—

* From the development of the temperatures
(response of the underground to the heat
Injection) the thermal conductivity can
be calculated.

4/19/2024 10
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Thermal Response Test

* The constant heat Injection causes a continuous
increase of fluid temperature for both inlet and
outlet.

« This increase follows a logarithmic behavior,
being sharp in the beginning period (transient
state) and slow down for the rest of heat
Injection (quasi-stationary state).

« On the long term, a stable condition of
Inlet/outlet temperature 1s reached, with the
radius of heat bulb in the ground enough to
dissipate the requested energy.

4/19/2024

Temperature (°F)

80
Inlét fluid témpera{ure to éHE g\‘ et
el | " L :
:/-»Average BHE fluid temperature
A ; : } i
T g e el e e —
\—E— - Dutlt:et fluid t:empera:ture Irc-r:n BHE
65 4 -
60 Hf T e b e e e -
55 f f f f f f f f f
0 5 10 15 20 25 30 35 40 45 50
Elapsed time (h)
11

27

|24

ha
—

18

16

13

Temperature (°C)



RERRl Co-funded by the
W Crasmus+ Programme
of the European Union

) GEB

e

Faculty of Engineering

Cairo University

Thermal Response Test

* Important notes:
 The injected power must be constant during the test period.
* No Interruption.
* Flow in BHE should be turbulent.
 Pumping rate 1-2 m3/h
« Accuracy of temperature measurement: at least 0,1°C, better 0,01°C.
* TRT lasts for more than 48 h.
* Max. recording interval: 20min. Better 1 or 3 min.

. 1|>||o drilling activities near TRT area, this will affect the groundwater
OW.

4/19/2024 12
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Data Interpretation: analytical model

26

no
=~

A Graphical method

y=1.3028x+7.6332

%) R2=0.9899 }_/'
g 22 V/
7
Thuia(t)=m-Int+b - )
f:;l‘" E 18 //
I
"= Gk /
% +f
14
12
0 2 4 6 8 10 12 14

4/19/2024 Natural logarithm of elapsed time in seconds
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* Inverse Modeling: minimizing the difference between experimentally obtained results and
results predicted by a mathematical model by adjusting inputs to the model.

A two-variable optimization is needed to solve for the thermal conductivity of the ground
and the borehole resistance.

 Objective function: to minimize the sum of the squared error (SSE), given by:

-

L W J;.hr =
SSE= E 1 (Texpwimﬂimf - T;uﬂde'f )

« A mathematical model: any adequate mathematical model that describes heat transfer in
BHES coupled to an optimization routine is suitable

» Adequate mathematical model: Infinite Line Source model (ILS).

4/19/2024 14
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Mathematical Models of Heat Transfer around BHEs

Cairo University

d The thermal diffusion equation for cylindrical coordinates:

d
a|—+—+ +
dr  radr r? E}ff)z dz72

2r 1or 19T Pr|  or
+{J:§

==

1 There are two models for BHES design:

= the line source model:(infinite (9°7/9:2=0) & finite line source
models).

(Note: the term ia_f is not applicable for both models)

,.2 a(p-

= the cylinder source model.
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Infinite Line Source Analytical Models of Heat Transfer in the Ground

* a classic solution to calculate the temperature distribution around an imaginary véttidarfitie
in a semi-infinite solid medium, initially at a uniform temperature.

Alz=+-—77|+6=F4

0°T 10T oT
dr? ror ot

The initial condition:
T(r,t)=T(r,0)=T,

the boundary conditions:
T(r,t)=T(oc0,t)=T,

Y JaT g
mi{r—|=
r—0 ! dr 2k
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Infinite Line Source Analytical Models of Heat Transfer in the Groundlcacu,ty Enimﬁng

o 2 Cairo University
/ (e Cou=
AT, = 1 [ du Where: « Aot
Ak ) u
q'
AT, =—W(u
" Axk (1)

, exp(—; . e
Wu) =ln( Pl fJ) +0.9653u—-0.1690u~ for u <1

e

I u+0.3575

W(u) = 2 1930 for u >1  where y is Euler’s constant = 0.5772

The final equation can also be expressed as:
AT,={'R,

where: R, is the ground thermal resistance per unit length of borehole
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 calculate the temperature at the borehole wall by substituting the
value of r»in place of rin the above equations.

 calculate the ground thermal resistance ( R, )

3 calculate the thermal resistance of the borehole elements ( R, ) (the
pipe configuration within the borehole, the borehole grout, and the
fluid thermal properties)

AT;=¢ R, +{R,

The average BHE fluid temperature is then simply calculated by:

Iy.avg=Aly+ 1
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 We cannot engineer the ground.

O The borehole thermal resistance is one of the main features over which
BHE designers have control.

1 the borehole thermal resistance is assumed as a steady-state value.

[ the thermal storage effects of the heat carrier fluid, pipe, and grout are
ignored.

[ This has been shown to be a reasonable approximation where rb/H ratios
are small, of the order of 0.0005

O The main goal is to minimize the borehole thermal resistance within

practical limits.
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Mathematical Models of the Borehole Thermal Resistance

** %
* 4k

) GEB

Iy —Tp

o

R, =
q

Where:

R, is the borehole thermal resistance per unit length
I is the average fluid temperature

1, is the average temperature at the borehole wall
g is the thermal pulse per unit length

Cairo University
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Mathematical Models of the Borehole
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Thermal Resistance Twe Ro To PRuows  Touund

 heat first must be transferred by o
fluid convection o

 then by conduction through the
pipe .

d And then through the borehole D
filling material

3 The filling material may be either Flid ~|_
grout or natural groundwater. |

| N e e e e e i e LA AR S,

§

Borehole wall 2"
1
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Mathematical Models of the @ Cairo University

Borehole Thermal Resistance
dThe borehole thermal | {2 .

resistance is also dependenton | |f 0
the type and arrangement of =
flow channels in the borehole B0t~ i P EEEDE
there are many configurations | 2@l B
of BHEs such as U-tube or =
concentric tube (coaxial tube) | =
configuration Sy
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Mathematical Models of the Borehole Thermal Resistance Faculty of Enineering

Cairo University

[ The heat fluxes associated with each leg of the U-tube are not equal
(except at the borehole bottom) and vary with depth.

[ Each leg thermally interacts with the surrounding ground, as well as
with each other.

 Calculation of the borehole thermal resistance is further
complicated with multiple U-tubes (i.e., two U-tubes or three U-
tubes).

Borehole A thermal circuit
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Mathematical Models of the Borehole Thermal Resistance Faculty Enineering
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The Pipe Thermal Resistance:

d the most common material of construction for BHEs is high-density
polyethylene (HDPE)

[ Crosslinked polyethylene (PEX) is also gaining market strength

 the thermal resistance of the BHE pipe per unit length of bore:

Dp.rmr
TN
P Dy inhin 2rk,

[ the convection coefficient (A) for internal flow in pipes:

Nuky
Dp. in

h=
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Mathematical Models of the Borehole Thermal Resistance Faculty Enineering
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The Pipe Thermal Resistance:

[ Under laminar flow conditions, Nu = constant = 4.36
1 Under turbulent flow conditions (i.e., Re >~2300), Nu = f(Re, Pr).
(d Over a wide range of 0.5 < Pr< 2000 and 3000 < Re< 5 x 106:

(f/8)(Re—1000)Pr
L+12.7(F/8)" /2 (Pr2/3=1)

Niu =

[ The heat transfer fluid used in BHEs ranges from pure water to an
agueous antifreeze mixture with various proportions of, most
commonly, propylene glycol.
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Mathematical Models of the Borehole Thermal Resistance Faculty of Enineering
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The Thermal Resistance of Grouted Single U-Tube BHEs:

( An ideal BHE bore grout would protect groundwater from
contamination, promote heat transfer, be easy to install, and have a
reasonable cost.

d The most commonly used grouting materials: either bentonite
based or cement based.

 The higher-thermal-conductivity materials result in lower borehole
thermal resistance, which translates to less drilling required.

[ for a single U-tube take the arithmetic average of the two cases of a
uniform borehole wall temperature ( % ....) and a uniform heat flux
on the borehole wall ( 7, ;... ):

! _ / / .
Rh, single U-tube — (R 1, effective + RE,Eﬁ,ﬁ’ecrfw) / 2
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The Thermal Resistance of Grouted Single U-Tube BHEs:

R, =R’ + : ‘H L _andR" R2+L .H _
L effective = "2 3R 5 \ritcy 12R e effective =772 5 3R \ e

rs 4r§5’2
—~l+0 T
o 25 2452\ 1 45? (r3-5*)
R] = /i+ln +oln -5 - 4
R'kgmm Ip Fp— -5 rkp | +/j + i_ + 2ipib( b+'S )
—ptaste (rt-54)°

r 484
S0
o 1 ; " ii 1 45~ (ib—S )
=i P ) (o) [ o0 ) - o 2 i gl
7k grout I A r = 7Tkp { 1 +p f [l . 16r,,S ] }
O

AT (-5

R\ R, y / k —k y
R| 5= m = 2Jrkgmme o — grout ~ Kgroun

kgrrm{ + kgrrmnd
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Mathematical Models of the Borehole Thermal Resistance

Cairo University

The Thermal Resistance of Grouted Double U-Tube BHEs:

2

R, R + L (H)H
b, double u—tube — “*sf ' A pr \
3R\ C

1 b 30, 1 l 2bry\ 1, (2br, R
Rf.;f: In|— ——+b“——ln(l—b3)——ln V2br I T et N
| 25;{5:;'(;;1: "p.out 4 4 2 Fp, out 4 Fp,out 4

l 2brpy\ 1, (2brp\ 1 | -b*
R = In (\/_J”)——ln( Jh)——ln( J4)] +R
Ekgmur rp,rmr 2 rp,r}ur 2 I+ h !
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Mathematical Models of the Borehole Thermal Resistance

Cairo University

The Thermal Resistance of Concentric Pipe (Coaxial) BHEs

Borehole radius | Inner flow
= T channel

Vi
/
v
S/
e
Vv
s
S

F \ Outer fl
i ! l l H I.-'J //\‘1.;" cuhggngl‘l'\lr
R b, concentric pipe ~ Raf + E R \C :|
- {I 4 IIIII I‘III
I\\\ :' «—/’f Grout
| A
Inner pipe Outer pipe
l
R,=——
) - .
/ 2k ground

[kgm“”d {(l + c‘_,“"m}})zln (Fi) —deI(l + f}rf};)z (F'I}E—F‘;) + 1 (f}rf‘g)z - % (f}rf‘;)é} ] + R;

k grout I'p
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* Objective function: to minimize the sum of the squared error (SSE), given by:  ™“Clicumesy
SSE= ZJI (Te.tpwimenmf - T-;HHHTE'!T)‘_

* The optimization steps:

(a) First, make some mitial guesses of the thermal conductivity and borehole thermal resist-
ance. Enter the remaining values needed to calculate the BHE fluid temperature (1.e..
pc,, undisturbed temperature, average heat mput during the test (in W or Btu/h), borehole
depth, borehole radius).

(b) Ateach time interval, calculate the average measured borehole fluid temperature 7,,,, = (7,
+ T,,)/2 and plot on a graph,

(¢c) At each time interval, calculate the ground thermal resistance {R;).

* If using the well function, R; 1s given by W(u)/(4xk).
* If using Eskilson’s analytical g-function, R; 1s given by g/(2xk).

4/19/2024 30
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* The optimization steps: Core University

(d) Ateach time interval, calculate the BHE fluid temperature (7 ,,,) using equations (3.18)
and (5.19). Thus, Ty 4y, = cj" R’g +§'R) +T,. Plot the calculated T} ave On the same graph as the
measured data.

(e) At each tme interval, calculate the squared error between the experimental and modeled
[luid temperatures. Sum the squared errors for times greater than Sszfrx.

() Use the Excel Solver to mimmimize the sum of all the squared errors, with the Solver being set
up to adjust the thermal conductivity and the borehole thermal resistance. Report the thermal
conductivity and borehole thermal resistance when the sum of squared error 1S minimized.

4/19/2024 31
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. The optimization steps: Faculty of Engineering

Cairo University
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Shallow geothermal engineering: overview
and applications

Lecture 8. Numerical simulations using FEFLOW
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Numerical sismulation using FEFLOW

* Numerical solutions are applied in geothermal engineering because the
analytical solution can only provide approximate information about
the heat exchanger behavior.

* There 1s the need to take into account ground thermal variability, heat
transfer at different depth, which 1s not possible with analytical
approximations.

5/10/2024 3
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Numerical sismulation using FEFLOW

Ternpirature
Comtinuoues

* Finite Element Modeling
softwares, such as FEFLOW, have
integrated packages of shallow
geothermal energy.

EEEEEENT FE
DD -
TR TRt il e

* The simulation 1s not used for the design,
but to validate the design specificities.

FEFLOW (R

5/10/2024 5
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Numerical sismulation using FEFLOW

* In order to perform the simulation, the general components of the
geothermal system should already be set up: number of

geo-exchangers, types, depth,...

* The model is fed by hypothesized thermal loads or temperature
constraints for different time steps and provide a possible simulation
of the heat transfer behavior and related temperatures.

5/10/2024 6
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Numerical sismulation using FEFLOW

* In order to model a geothermal system using FEFLOW, the following
parameters should be known:
* Involved area, location of buildings and location of geo-exchangers (Autocad,
Qgis,..).
* Climate data
* Ground thermal and hydraulic properties
* Groundwater flow movement and direction
* Heat load to inject and extract from the ground at different time steps.

5/10/2024 v
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Numerical simulation using FEFLOW

* The creation of the model 1s mainly based on «time series» of different

variables as boundary conditions:
* temperature at different depth.
* Varying groundwater level.
* target temperature variation in the geo-exchanger.
* Injected/extracted power to/from the ground, Etc..

* The mesh can be layered or unstructured. In the case of vertical geo-
exchangers, the 3D layered version works good.

5/10/2024 8
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Numerical simulation using FEFLOW

Model Target Type
Target type selection

Select the target type of the new FEM model:

(@) 20 or layered 30 mesh

() Fully unstructured 3D mesh

Press to oreate a new FEM model with the current settings.

<Back Fiish | Cancel | 9

5/10/2024
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Numerical sismulation using FEFLOW

* As an example, the surface layer can be created in Autocad, converted
as DXF (ASCI), and then transformed 1n shapefile SHP in Qgis, to be
imported in FEFLOW.

* Since the original drawing 1s composed by lines, polygons and overall
points (the exact geo-exchanger locations), each of them should be
imported as a different shapefile, with homogenous local Coordinate
Reference System

5/10/2024 10
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Numerical sismulation using FEFLOW
* Import different shapefiles
() Seleziona Vettori da Aggiungere... | Pali_progetto.dxf X

D
\Salvataggi_2021_controllare_e_cancellareJltime_Dicembre2021_da_cancellare\Progetto_stoccagoio Rapt\FEFLOW \Mappe _base'\Pali_progetto.dxf

ID del layer Mome layer “ Mumero di elementi Tipo di geometria Descrizione
entities

entities

|Selezinna Tutto | |Deselezinna Tutto | Agaiungi layer ad un gruppo

5/10/2024 Ok | Annula | |12
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Numerical sismulation using FEFLOW

* Important Note: the areas should be 1dentified as polygons, in order to
create the mesh later on. Therefore, transformation from lines
polygons 1s necessary (in Autocad or later, in Qgis, as an example).

5/10/2024 12
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Numerical snnulatlon using FEFLOW

* The area can be manually created

* or imported.

* It 1s recommended to import it,
after design and transformation in
shapefile. In this way, the limits of
the buildings and the location
of the geo-exchangers are more
precise.

5/10/2024

New EEM Model ? HEM

2D Model and 3D Layered Model
Import type selection

Select the one of the following options:

_) Manual domain setup
Define 20 supermesh extent by origin and extents in X and ¥ directions.

® Supermesh import from maps
Import maps and convert points, lines, and polygons to 2D supermesh items.

") FEM mesh import from maps
Import non-overlapping maps of triangles and guads to careate mesh elements from
map polygons.

< Back MNext > Finis Cance|

13
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Numerical simulation using FEFLOW

* Once the polygons are imported 1in Qgis, the mesh can be created.

* Polygons of the area are fundamental, but also small polygons can be
inserted (example: buildings), lines (examples: rivers) and overall for
geothermal projects points (the locations of the geo-exchangers).

5/10/2024 14
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Numerical sismulation using FEFLOW
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Propety Walug
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_Shape
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I
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Numerical sismulation using FEFLOW

* For geo-exchanger applications, it 1s useful to refine the mesh around
the points (location of geo-exchangers). Select «Triangle» and «Force

Delaunay Criteriony.

* Refinement must be set up around BE
lines of buildings.

5/10/2024

5 and can be set up along the
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Numerical sismulation using FEFLOW

5/10/2024 17
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Numerical sismulation using FEFLOW

* In a geo-exchanger project, the variability of the thermal and hydraulic
properties along depth 1s fundamental. Therefore, move to the 3D view
and increase the number of layers.

* First layer: 1-0 buffer zone with temperature wave data and building
data

* Fitted layers at the top, to correctly represent the influence of
smoothed weather temperature data underground

5/10/2024 18
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Numerical simulation using FEFLOW

* From the «neutral zoney, layers

coinciding with t

and aquifer cond

he different lithology

1tions

* Last layer of hig]

into account the geothermal heat flow

coming from the

5/10/2024

ner thickness, keeping

earth crust.
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Numerical sismulation using FEFLOW

* For geo-exchanger projects, transport
of heat must be selected.
* The flow type depends on the aquifer.

 For such type of problems, it 1s enough
to select «first order accurate»
predictor-corrector.
* Time length of the simulation must be
also decided in the Problem Summary.

5/10/2024

=
e

FEFLOW Praoblem Settings
Problem Summary Scenaria desaiption
4 Problem Class ]
Free Surface bhe_cakore
Simulation-Time Control
imulation- [ ime Lontrol S'“L‘ateﬂn“viam

Mumerical Parameters
Gravity Settings
Anisotropy Settings

' A

@ (@) Standard (saturated) groundwater-flow equation

=

Transport Settings +/| Unconfined conditions [controlled via the Free-Surface” setfings]

Other Settings
Equation-System Solver
Particle- Tracking Computation
File |/0 Settings

Map Settings Include franspart of...
Editor Settings [ Mass
'y L]
it | L] Age
o Heat
State
- Steady
Fluid flow: .
= Transport:

@ () Richards' equation (unsaturated or variably saturated medi)

Transient
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Numerical sismulation using FEFLOW

* Creation of time series for the boundary conditions, which will
influence the heat transfer and groundwater flow movement of
«natural state», which means before the heat extraction from geo-
exchangers.

* They must be created as .pow files and inserted separately for each
layer or line.

5/10/2024 21
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Numerical sismulation using FEFLOW

e r . .
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Numerical sismulation using FEFLOW

* For each layer, the ground properties can be inserted. They can present a strong
variability, therefore high differences in ground properties (because of different
geology and hydrogeology) should be considered by separating the layers.

* Ground properties will influence the groundwater flow movement and temperature

behavior underground (natural state) and later on, the heat extraction/injection
potential of the geo-exchangers.

5/10/2024 23
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Numerical sismulation using FEFLOW

> Model Locations
Dbseraation Ponts
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% Ewpansion coefficient
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% Thermal conductivity of fiuid
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Numerical sismulation using FEFLOW

* A continuous heat transfer and groundwater flow movement for the
whole area 1s guaranteed since the time series are set at the boundaries.

 Usually, natural state besides the geo-exchangers is validated by
temperature sensors, with the system off.

 Natural state can comprise also building thermal influence.

5/10/2024 25
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Numerical sismulation using FEFLOW

0 10 20
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Numerical simulation using FEFLOW

* In order to validate the natural state, observation points can be
inserted, at required depth.

* After many years of operations, the temperature around the geo-
exchangers should be stable and similar to the one measured 1n the
field.

* Usually, observation points are inserted at the nodes of the mesh, but it
1s not mandatory.
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* The same as temperature, groundwater flow 1s imposed at the boundaries.

* According to the definition of the hydraulic head differences, the
direction and strength of the groundwater flow 1s set up in the «natural
state» phase through piezometers, the «natural state» can be validated

as well.
Important: groundwater flow strongly influences the heat transfer behavior,

therefore for a proper simulation approaching reality should be carefully
taken 1nto account.
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* After confirmation of the natural state, it 1s possible to set up the geo-
exchangers properties: materials, geometry, time series (boundary

conditions) and arrays of multiple borehole heat exchangers.
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Time series of BHESs

* This 1s the most sensitive part. The time series should approximate
the real request of the heat pump for each time step.

* The result of the simulation, without validation on-site, to be used for
design purposes, will not represent the real behavior of the system, but

can provide indications on the minimum requirements of the heat
pump.
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Minimum requirements of the system

* Minimum 1nlet temperature in winter.
* Maximum inlet temperature 1n summer.
* Minimum temperature variation between summer and winter.

* Minimum power provided in the different periods.
All these constraints should be considered and respected.
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Simulation result concerns

* Inlet and outlet temperature evolution along depth.

* Inlet and outlet temperature evolution over time.

* Local temperature evolution around the BHE (through observation
points).
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Simulation validation
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* Sustainability validation 1s carried out by
comparing the simulation results and
the minimum requirements.
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* The whole history of the simulation can
be recorded as dac file.

* The dac file can be used for coupling
simulation with heat pump models.
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