

Faculty of Engineering Cairo University

Geothermal Energy Capacity Building in Egypt (GEB)

Thermal Engineering for Geothermal Energy

Objectives – Contents – Outcomes (1)

Objectives

- An introductory overview of thermodynamics
- **Some basic aspects of fluid mechanics** (flow in pipes, fluid machines)
- Some basic aspects of heat transfer (with a special focus on conduction – heat transfer in soil)

The course will present the fundamentals of these topics in a classical approach, creating a solid base that will allow the students to analyse, in later subjects, energy systems in general and geothermal systems in particular.

Prerequisites

An introductory course of graduate physics

Objectives – Contents – Outcomes (2)

Contents

Part I – Thermodynamics

- **Basic concepts**
- Energy concepts
- **Pure substance & Mixtures**
- **Given States First Law**
- Second Law
- **Entropy**
- **D** Power cycles
- **Refrigeration cycles**

Part II – Transport phenomena

- **Fluid properties & basic laws**
- **Losses in pipes**
- **Description of fluid machines**
- **Modes of heat transfer**
- **Conduction basics**
- Conduction in variable sections & fins
- **Heat transfer in soil**

Objectives – Contents – Outcomes (2)

Outcomes

At the end of this course, trainee should be able to:

- **Identify, quantify different energies, and perform energy balances**
- **Evaluate thermodynamic properties of matter**
- **Understand implications of Second Law**
- **Evaluate entropy and understand its charts**
- Understand and analyse power and refrigeration cycles
- **Evaluate losses in a hydraulic loop**
- **Galaxy Select appropriate fluid machine**
- **D** Perform simple heat transfer estimations, especially conduction
- Understand heat transfer mechanisms in soil

Objectives – Contents – Outcomes (2)

References

- Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer. Michael J. Moran, Howard N. Shapiro, Bruce R. Munson, David P. DeWitt. John Wiley, 2003
- □ Fundamentals of Engineering Thermodynamics. M. J. Moran, H.N, Shapiro, D. N, Boettner, M. B. Bailet. John Wiley, 2018
- **Fluid Mechanics. F.rank M. White. McGraw Hill, 2009**
- **Fundamentals of Heat and Mass Transfer. F. P. Incropera, D. P. Dewitt,**
 - T. L. Bergman, A. S. Lavin. John Wiley, 2007

INTRODUCTION TO

THERMAL SYSTEMS Engineering

History of Energy

New Energies

Geothermal, Biomass, Waves, ...

Geothermal energy: Source, Applications

Can be used to: Produce electricity, to heat, or to cool

Need to understand:

- How energy changes its form? (thermodynamics)
- How water moves? (fluid mechanics)
- How heat moves? (heat transfer)

Place of thermodynamics academically

To retain of chapter 1

- Course objectives and contents
- Life depends on energy
- Human development is related to energy
- > Energy crisis environmental impact:
 - ⇒ Renewable energies
 - ⇒ Geothermal
- > Applications of thermodynamics are endless

Faculty of Engineering Cairo University

Geothermal Energy Capacity Building in Egypt (GEB)

ThermalEngineeringforGeothermalEnergy

Co-funded by the Erasmus+ Programme of the European Union

Macro or Micro?

Macroscopic view

Classical Thermodynamics

Matter is a continuum Essential part of the course

Statistical Thermodynamics

Matter is discrete To better understand

State

<u>The state</u> of a system: Its nature and characteristics <u>AT</u> a given instant

State Properties :Distance along path (trajectory)Quantitative description of the stateDistance from origin (state)AS IS,NOT how did the system reach it (the trajectory)

State property ≠ <u>Property of the trajectory</u>

Equilibrium

<u>Equilibrium</u>: Inability to perform a <u>spontaneous</u> change of state

State properties of a system <u>CANNOT</u> be defined <u>outside EQUILIBRIUM</u>

Process

Process : continuous transition from state A to state B

A process in "equilibrium"?!!

A process in "quasi- equilibrium"

Cycle : A set of processes ending by the initial state

State Properties

> **Extensive** Property :

• Proportional to size: Mass, volume, energy, charge, ...

> Intensive Property :

• Independent of size (same value at each portion): Temperature, pressure, electric potential, ...

Specific Property :

• Ratio of two Extensive Properties: specific volume (=1/Density), specific energy, ...

Internal vs external Property : (Temperature vs speed)

37°

Concepts and Laws

The world is unified (and unique!) But, to understand it, ... humans have to «analyze it»

Dimension versus unit

Units

meter, inch, foot, ...

second, hour, day, month, ...

kilogram, pound, ton, ...

SI system

Basic SI Units:			Sup. SI U	nits :	
Length	meter	m			
Mass	kilogram	kg	Plane Angle	Solid Angle	
Time	second	S	radian	steradian	
Electr. Current	Ampere	Α	rad	sr	
Temperature	Kelvin	Κ		i X	
Q. of matter	mole	mol	_(
Lumin. Intensity	candela	cd		i /	
Derived SI Units :					
Force Newt	n N = kg	m/s²	Multiples of Units:		
Pressure Pasc	al Pa = N/	′ m ²	-		
Energy Joule	e J = Nr	n	M Me	ga 10 ⁶	
Power Watt	W = J/	S	G Gig	a 10 ⁹	

. . .

. . .

Density & specific volume

Definition of Density:

$$\rho \equiv \lim_{\Delta V \to \varepsilon > 0} \frac{\Delta m}{\Delta V}$$

Specific (Intensive) Property

Molecular Mass $\mu = \text{mass of}$ Molar Density $\overline{\rho} = \rho/\mu$ Specific Volume $v = 1/\rho$

 μ = mass of a mole (in g/mol or kg/kmol)

 $\overline{\rho} = \rho/\mu$ SI Units : kmol/m³

$$v = 1/\rho$$
 SI Units : m³/kg

Molar Specific Volume

 $\overline{v} = v \mu$ SI Units : m³/kmol

Defining Pressure

 $P = \lim_{\Delta A \to \varepsilon > 0}$

Definition of pressure:

 $\mathcal{E} \neq 0$

 ΔF

Specific (Intensive) Property

Other units M Pa = 10^{6} Pa; bar = 10^{5} Pa; atm = 1.013 bar; psi = 1lb/in²= 6.8948 kPa torr = 1mmHg=133.32 Pa

Force due to the impact

of molecules on the wall

After you!

Measuring Pressure

What is Temperature?!

Temperature is a measure of the ability:

macro: to transfer calorific energy

chaotic

Intensive Property

micro: of molecules to transmit their excitation intensity

Problematic of an objective scale for an *intensive* property

Extensive property is easy to measure:

The "Zero'th" Law!

Defining difference :

Hence, we can define an *arbitrary* temperature scale : Colder Hotter

> For a *rational* scale : The thermodynamic temperature scale (see below)

Thermometers

Importance of assumption!

Gas Thermo-		$t^* = 100 \frac{(v - v _0)}{(v _{100} - v _0)}$			<i>v</i> specific volume (cm ³ /g) <i>t</i> * Temperature assuming linear in <i>v</i> (°C)					
meter t		Water Therm. v t^*			Alcohol Therm. v ť *			Mercury Therm. v t*		
-25		-	-		1.2167	-18.8		0.073220	-25.0	
0		1.0002	0		1.2475	0		0.073556	0	
25		1.0029	6.2		1.2800	19.8		0.073890	24.9	
50		1.0121	27.5		1.3170	42.4		0.074225	49.9	
75		1.0259	59.4		1.3604	68.8		0.074561	74.9	
100		1.0435	100		1.4116	100		0.074898	100	

Conservation of mass

To retain of chapter 2

- System: Control mass (closed), Control volume (open), Isolated
- State property: (NOT trajectory), intensive vs extensive, specific
- **World unity:** Relation between concepts and laws, principles
- > **Dimensions and units:** SI 7 basic units, derived units
- **Specific volume:** (specific) $v = 1 / \rho$ (per unit mass or unit mole)
- > **Pressure:** (specific) absolute (>0), gauge, units
- **Temperature:** (intensive difficulty), 0th Law, thermometric properties, fixed points,

thermometers, ideal gas thermometer

Conservation of mass:

$$\frac{d m_s}{dt} = \dot{m}_{in} - \dot{m}_{out}$$

$$\dot{m} = \int \rho \, \mathbf{V} \, dA$$
$$= \rho \, \mathbf{v} \, A \text{ if uniform}$$

Faculty of Engineering Cairo University

Geothermal Energy Capacity Building in Egypt (GEB)

ThermalEngineeringforGeothermalEnergy

Energy: definition, simple forms

Different forms

Forms of energy:

Mechanical Power and Work

Mechanical power is: Power <u>crossing</u> the boundaries of a system due to the action of a <u>force</u> that <u>causes a displacement velocity</u>

Examples of point forces

Power = $F v = F (r \omega) = T\omega$ **Torque * angular speed**

F_{ext} Force **on** the system $\mathbf{F}_{sys} = -\mathbf{F}_{ext}$ Force by the system Work of a force Work of a force causing acceleration against Gravity $\mathbf{F}_{ext} = -\mathbf{F}_{svs} = m \, d\mathbf{v} / dt$ $\mathbf{F}_{ext} = -\mathbf{F}_{svs} = -m\,\mathbf{g}$ $W_{s} = \int_{t_{1}}^{t_{2}} (-m \mathbf{g}) \bullet \mathbf{v} dt$ $W_{s} = \int_{z_{1}}^{z_{2}} m \mathbf{g} dz$ $W_{s} = m \mathbf{g} (z_{2} - z_{1})$ $W_s = \int_t^{t_2} (m \, d\mathbf{v}/dt) \bullet \mathbf{v} \, dt$ $W_s = \int_{w}^{v_2} m\mathbf{v} \cdot d\mathbf{v}$ $W_s = \frac{1}{2}m\left(\mathbf{v}_2^2 - \mathbf{v}_1^2\right)$ **Kinetic Energy : Potential Energy** : linear $\frac{1}{2} m v^2$ m g zrotational $\frac{1}{2}I\omega^2$ g = -gk

Work by an elastic body

F is the force **on** the system = $k \mathbf{x}$

x is the *elongation* (= Length – Free length)

v is the *materiel* velocity

TT7

Power

Work

$$W = \mathbf{F} \cdot \mathbf{v}$$
$$W = \int_{t_1}^{t_2} \mathbf{F} \cdot \mathbf{v} dt$$
$$W = \int_{\mathbf{x}_1}^{\mathbf{x}_2} k \mathbf{x} \cdot d\mathbf{x}$$
$$W = \frac{1}{2} k \left(x_2^2 - x_1^2 \right)$$

Work of distributed forces A – Over a surface

Case 1: Work of Changing Volume

Work of changing volume is NOT always - PdV

N.B.:

In the ideal case (no friction) work is called W_{ideal} . Evidently: $W_{actual} - W_{ideal} > 0$ Whether work is received by or given to the system

Case 2: Flow work

 \triangleright No friction (S = P n)

> Equilibrium (pressure P is uniform over each section)

> Open System ($\mathbf{n}.\mathbf{v}_s \neq \mathbf{n}.\mathbf{v}_m$)

> Steady state (independent of time)

Then:

$$W = \int_{t_1}^{t_2} \left(-\int_A \mathbf{S} \cdot \mathbf{v}_m dA \right) dt$$

$$W_{flow in} = \left(\int_{t_1}^{t_2} dt \right) \int_A (-P\mathbf{n}) \cdot \mathbf{v}_m dA$$

$$W_{flow in} = -P\Delta t \int_A (\mathbf{n} \cdot \mathbf{v}_m) dA$$

$$= P\Delta t \cdot (V/\Delta t) = PV$$

To force the fluid at entry: $W_1 = P_1 A_1 l_1 = P_1 V_1$ **At exit:** $W_2 = -P_2 V_2$

Flow work P_1 =

$$V_1 - P_2 V_2$$

Useful work of an open system

N.B.: dPV = PdV + VdP, i.e.: $(P_2V_2 - P_1V_1) = \int_1^2 PdV + \int_1^2 VdP$

Work of Distributed Forces B – Over a line

Coefficient of Surface Tension: σ = Force / unit length

Additional

Internal Energy (qualitative)

Internal Energy : Generalization

Sign Convention

Heat power \hat{Q} is:

- A power that <u>crosses</u> the boundary
- Due to a temperature difference
- <u>NOT</u> associated with a transfer of matter

Heat Power in Watt \dot{Q} Heat : Q in Joule

> System: Water in a tea pot. What are energies involved?

Distinguish between heat (energy that <u>crosses</u>) and internal energy (energy <u>stored</u> in a hot body)

Heat transferred is path dependent

1st Law for a <u>Control mass</u>

Energy is conserved

☐ Final state = Initial state
Stored Energies before = Stored Energies after

$$\geq \Sigma$$
 Crossing Energies = $Q_{net} + W_{net} = 0$

Total Internal energy E is a <u>State property</u>

Process:	1A2	2B1	2C1
Work:	$W_{1A2} = \int_{1A2} \dot{W} dt$	$W_{2B1} = \int_{2B1} \dot{W} dt$	$W_{2C1} = \int_{2C1} \dot{W} dt$
Heat:	$Q_{1A2} = \int_{1A2} \dot{Q} dt$	$Q_{2B1} = \int_{2B1} \dot{Q} dt$	$Q_{2C1} = \int_{2C1} \dot{Q} dt$

For the cycle 1A2B1:
$$\int_{1A2} (\dot{Q} + \dot{W}) dt + \int_{2B1} (\dot{Q} + \dot{W}) dt = 0$$

For the cycle 1A2C1:
$$\int_{1A2} (\dot{Q} + \dot{W}) dt + \int_{2C1} (\dot{Q} + \dot{W}) dt = 0$$

By subtracting:
$$\int_{2B1} (\dot{Q} + \dot{W}) dt = \int_{2C1} (\dot{Q} + \dot{W}) dt$$

For a process:
The sum of energies crossing
is independent of path:
$$\int_{12} (\dot{Q} + \dot{W}) dt = E_2 - E_1$$

$$\int_{12} (\dot{Q} + \dot{W}) dt = E_2 - E_1$$

Total internal Energy
$$\Delta E = \Delta U + \Delta \text{ KE} + \Delta \text{ PE} + ...$$

1st Law : General form

Sum of received powers =rate of increase of stored energies

F

n

Energy carried by
entering mass

$$\dot{m}_{in} (e + P v)_{in}$$

 $e = E/m$
 $\dot{d}(m_s e_s)/dt$
 $\dot{d}(m_s e_$

To retain of chapter 3 - A > Energy is the ability to produce a change, many forms

Work W, Mechanical power
$$\dot{W}$$
: $W = \mathbf{F} \cdot \mathbf{v}$ $W = \int_{\vec{x}_1}^{x_2} \mathbf{F} \cdot d\mathbf{x}$ 3 conditions:Examples• Crosses system boundaries,Examples• due to force ON the system, $Examples• force on $W = \frac{-1}{2}k(x_2^2 - x_1^2)$$

Work depends on the process (the path)

producing displacement

Work of changing volume: if:
No friction (S = P n)
Equilibrium (pressure P uniform)
Closed system (n.v_s = n.v_m)
Work of surface tension:
Flow work is: $P_1V_1 - P_2V_2$ For open system: $\int_1^2 V dP$ $\int_1^2 V dP$

 \bigcup **Electric** Power: $-\sum_{i} \mathcal{V}_{i} I_{i}$

To retain of chapter 3 - B

Internal energy U:

Energies (kinetic, potential, and chemical) of molecules: State property \succ Internal energy + Flow work \Rightarrow Enthalpy

- <u>Crosses</u> the boundary
- *Heat power Q*: Due to a <u>temperature</u> difference
 - NOT associated with a transfer of matter

The general form of the First Law is:

$$\dot{Q} + \dot{W} + \dot{m}_{in} \left(h + KE + PE \right)_{in} - \dot{m}_{out} \left(h + KE + PE \right)_{out} = \frac{d}{dt} \left[m_s \left(u + KE + PE \right)_s \right]$$

Special case, closed system: $q + w = \Delta (u + KE + PE)$

Special case, Steady Flow:

$$q + w = \Delta \left(h + KE + PE \right)$$

Geothermal Energy Capacity Building in Egypt (GEB)

Thermal Engineering for Geothermal Energy

4 – Pure substance & gas mixtures

Definitions

Phase

A Group of molecules having:

- Homogeneous chemical Composition
- Homogeneous physical Properties

Examples

- Gas
- Liquid
- Solid
 - various crystalline structures

Pure substance

Homogeneous and invariable chemical Composition in all phases

 H_2O , CO_2 , ... But air ??

Evaporation at Constant Pressure 1

Evaporation at Constant Pressure 2

Fusion and Sublimation

The operation can be repeated at other pressures => lines of saturation

If we heat a solid at very low pressure:

 \Rightarrow sublimation at constant *T*

Ice cubes float !?

Water: A special case

Ice cubes float:

Solid Density < liquid density

Ice cubes shrink during fusion

Thermodynamic Surfaces

Thermodynamic Tables

Thermodynamic (pressure or temperature) <u>saturation</u> <i>Tables:

P	T	v_{f}	v_g
•••	•••	•••	•••
•••	•••	•••	• • •

For wet vapor :

Dryness Fraction (quality) $x = m_G / (m_L + m_G)$ $v = x v_g + (1-x) v_f$ $= v_g - (1-x) v_{fg}$ $= v_f + x v_{fg}$ *Thermodynamic <u>superheat</u> Tables:*

	<i>P</i> =	<i>P</i> =	<i>P</i> =
<i>T</i> =	v=	𝒴 =	v=
<i>T</i> =	𝒴=	v=	v=
<i>T</i> =	<i>v</i> =	v=	v=

For a compressed liquid : If no tables, use: $v(T,P) \approx v_{satL}(T)$

Online data, ex: https://webbook.nist.gov/chemistry/fluid/

Degrees of Freedom F

F = <u>Minimum</u> Number of state variables necessary to <u>define</u> the state

P = Number of Phases

C = Number of chemical componants

In this case: Number of Degrees of Freedom = Number of different forms of energy exchange:

<u>If only</u>:

- Heat
- work of changing volume

$$\square$$
 F = 2

<u>Example</u> :

To localize the state of a gas, We need to know (P, T), (P, v) or (v, T)

Gibbs Phase Rule

<u>General Case</u>: If number of components C > 1

Every new component adds a new degree of freedom

$$F = C - \mathcal{P} + 2$$

Gibbs Phase Rule for <u>Two</u> forms of energy exchange

State Equations

Assume a number *F* (degrees of Freedom) of state variables are given:

All other state variables can be expressed in terms of them These relations are:

State Equations

Mainly 2 kinds:

> Thermal equation of state :
$$f(P, T, v) = 0$$
 $(v = 1/\rho)$

> Calorific equations of state $u = f_1 (P, T)$

$$h = f_2 \left(P, T \right)$$

Perfect (Ideal) Gas

Hypotheses:

Low density

- volume of molecules Negligible
- intermolecular forces Negligible
- time of impact Negligible
- Molecular collisions are perfectly elastic (No operate loss during impact)

(No energy loss during impact)

Change of the momentum of a particle during collision with the plan W (component in y):

$$\Delta$$
 (momentum) = m_0 (v_y – (– v_y) = $2m_0v_y$

Plan W

of area A

Average Time between 2 collisions on the plan W:

$$\Delta t = 2 L / v_y$$

For N molecules:

 $PV - m \sum V^2$

L

Plan W

V

$$\mathbf{1} \mathbf{v} = m_0 \mathbf{2} \mathbf{v}_y$$

Pressure due to a molecule:

$$P_{1 \text{ molecule}} = Force/A = [\Delta (momentum)/\Delta t]/A = m_0 v_y^2 / V$$

Equation of State for a perfect gasPrinciple of equipartition of energy:
$$\searrow$$
 \sum \sum <

Real gases Equations of state

Van der Waals (VDW):

- Volume of molecules non negligeable
- Intermolecular forces non negligeable

$$\Rightarrow \quad (P + a/v^2) (v - b) = R T \quad (a, b \text{ const.})$$

a & *b* are functions of $P_R = P/P_c$; $T_R = T/T_c$;

Law of corresponding states :

Compressibility: Z = Pv/RT

For all Gases : $Z = f(P_R, T_R)$ (see compressibility charts) If gas at low density: (ex. $P_R < 0.1$ and/or $T_R > 5$) then $Z \approx 1$ i.e. almost a perfect gas

The precision of VDW is better than Pv=RT; BUT not perfect

The error of compressibility < 2.5% for all gases

Energy Properties

Ratio of thermal capacities: $\gamma = c_P / c_v$ (Specific heats ratio)

Reminder:

Assuming translational movement only (degrees of freedom f = 3) + principle of equipartition of energy:

 $k T = 1/3 m_0 v_{rms}^2$

In general, if $f \neq 3$:

$$f k T/2 = 1/2 m_0 v_{rms}^2 = KE$$
 for one molecule

For a perfect gas, u is composed of KE only (no intermolecular forces) No. of molecules in 1 kg: N_A / μ

$$u = (N_A k/\mu) (f/2)T = R (f/2) T$$
Also:

$$h = u + Pv = R (1 + f/2) T$$

$$(c_v = \partial u/\partial T|_{v=const} = R (f/2) \\ c_P = \partial h/\partial T|_{P=const} = R (1 + f/2)$$

$$(\gamma = c_P/c_v = (f+2)/f$$

$$(c_P - c_v = R)$$

$$\Delta u = c_v \Delta T; \qquad c_v = R/(\gamma - 1) \\ \Delta h = c_P \Delta T; \qquad c_P = \gamma R/(\gamma - 1)$$

Variation of Internal Energy with temperature (qualitative)

Gas, large variations of temperature 1

To estimate thermal capacities of a perfect gas: $f \Rightarrow \gamma = (f+2) / f \Rightarrow c_v = R/(\gamma-1) \Rightarrow c_P = \gamma c_v$

But *f* depends on temperature *T* and the nature of molecules

Gas, large variations of temperature 2

$$c_{v} = \partial u/\partial T |_{v} = du / dT$$

$$c_{P} = \partial h/\partial T |_{P} = dh / dT = d(u+Pv)/dT = d(u+RT)/dT = c_{v} + R$$

$$c_{P} = f(T) \text{ at low pressure is given in tables, hence:}$$

$$h = \int c_P dT; \qquad c_v = c_P - R; \qquad u = \int c_v dT$$

Calorific Eq. of state – Other phases

For a mixture liquid-vapor:

$$u = x u_g + (1-x) u_f$$

$$h = x h_g + (1-x) h_f$$

Latent heat :

$$h_{fg} = h_g - h_f$$

$$c n \rightarrow \infty$$

Υ

For a solid or liquid:

 $c_P = c_v = c$

For crystals at am<u>b</u>ient temperature: $c = 3 R / \mu$

Hypothesis

Very Low Density

- **Negligible Molecular Interactions**
- \Box
- Each component acts as an independent ideal gas

Mixture Molecular Mass

One can define an « equivalent » molecular mass:

$$\mu_{mix} = m_T / n_T = \Sigma m_i / n_T = \Sigma n_i \mu_i / n_T = \Sigma y_i \mu_i$$

Also:

$$\mu_{mix} = m_T / n_T = m_T / \Sigma n_i = m_T / (\Sigma m_i / \mu_i) = 1 / (\Sigma x_i / \mu_i)$$

Conversion Rules:

$$x_i = m_i / m_T = n_i \mu_i / m_T = (n_i / n_T) \mu_i / (m_T / n_T) = y_i \mu_i / \mu_{mix}$$

 $y_i = x_i \ \mu_{mix} / \mu_i$

Additional

Amagat Model

Every component *i* behaves as a separate perfect gas Having the following state properties:

- $P = P_{mix}$, $T = T_{mix}$
- V_i is the 'partial volume' : $V_i < V_{mix}$

Gaz Gaz B	Gaz <i>C</i>
-----------	-----------------

 $P V_i = n_i \overline{R} T \qquad (*)$

Summing for all components:

 $P \Sigma V_i = n_T R T \quad (\#)$

Comparing with PV=nRT gives

 $\Sigma V_i = V_{mix}$

Dividing equation (*) by (#) $V_i / V = n_i / n_T = y_i$

Dalton Model

Every component *i* behaves as a separate perfect gas Having the following state properties:

- $V = V_{mix}$, $T = T_{mix}$
- P_i is the 'partial pressure' : $P_i < P_{mix}$

 $P_i V = n_i R T \qquad (*)$

Summing for all components $\Sigma P_i V = n_T R T$ (#)

Comparing with $PV=n\overline{R}T$ $\Sigma P_i = P_{mix}$ Dividing equation (*) by (#) $P_i/P = n_i/n_T = v_i$

Energy properties of Ideal gas mixtures

$$u_{mix}(T) = \sum_{i} x_i u_i(T)$$

$$c_{vmix}(T) = \sum_{i} x_i c_{vi}(T)$$

$$h_{mix}(T) = \sum_{i} x_i h_i(T)$$
$$c_{Pmix}(T) = \sum_{i} x_i c_{Pi}(T)$$

$$\bar{u}_{mix}(T) = \sum_{i} y_i \, \bar{u}_i(T)$$
$$\bar{c}_{vmix}(T) = \sum_{i} y_i \, \bar{c}_{vi}(T)$$

$$\bar{h}_{mix}(T) = \sum_{i} y_i \,\bar{h}_i(T)$$
$$\bar{c}_{Pmix}(T) = \sum_{i} y_i \,\bar{c}_{Pi}(T)$$

Special mixture: Air – Water vapor

Problem considered

- A perfect mixture of perfect gases:
- Each component : Perfect Gas
- A small quantity of matter may change phase
 - (Gas Liquid or Gas Solid)

Simplified Model

- gaseous phase is homogeneous and composed of 2 perfect gases
- vapor is at low pressure
- •Treated is a perfect gas, even when close to saturation
- Liquid and solid phases are void of dissolved gases

Definitions

Absolute (Specific) Humidity

 $\omega = m_{vap} / m_a$

m_{vap} mass of vapour *m_a* mass of other gases

 $\omega = (P_{vap} V / R_{vap} T) / (P_a V / R_a T) = (\mu_{vap} / \mu_a) (P_{vap} / P_a) \qquad (For air and water:$ $\omega = 0.622 P_{vap} / P_{air})$

Relative Humidity

 $\phi = P_{vap} / P_{vap_sat}$

*P*_{vap_sat} (*T*) Saturation pressure At mixture temperature

Max Quantity of vapor when: $\phi = 100\%$

Starting from state 1, we can :

 Add vapor at *T* const. Until state 3 (φ reaches 100%) (beyond points 2 or 3: condensation)

(For air and water: $\phi = \omega P_{air} / (0.622 P_{vap_sat}(T))$

Adiabatic Saturation

- T_1 : Temperature of state <u>1</u> (dry bulb)
- T₂: Temperature of state <u>2</u> (wet bulb)

T wet bulb \leq T dry bulb

Psychometric Chart

Air conditionning processes

Application: humidification air conditioner

Application: desiccant air conditioner

To retain of chapter 4. A

Phase change

- > During phase change (evaporation, fusion, ...) $P = const \Leftrightarrow T = Const$.
- Latent Heat: heat for complete phase change @ P = const.
- Saturation lines indicate phase change is about to start or end.
- Critical point: vapor and liquid are indistinguishable. Triple line 3 phases in equilibrium
- Dryness fraction (quality) x is percentage of evaporation

Ideal (perfect) gas

- > ANY gas at very low density is an ideal (perfect) gas
- > Thermal equation of state: Pv = RT
- \blacktriangleright R = gas constant = \overline{R} / μ ; \overline{R} = 8314.5 J/kmol K, μ is the molecular mass

Calorific equations of state

- $\succ For ideal gases small \Delta T: \Delta u = c_v \Delta T; \Delta h = c_P \Delta T; c_p \& c_v constants; c_P c_v = R; c_P/c_v = \gamma$
- $\succ For ideal gases large \Delta T: \Delta u = \int c_v dT; \Delta h = \int c_P dT; c_p \& c_v = f(T); c_P c_v = R; (semi-ideal)$
- For real gases (non-ideal): u, h = f(T, P)

To retain of chapter 4. B

Real gases

- > ANY gas at HIGH density is NOT ideal, it is called a REAL gas: $Pv \neq RT$
- > Many different equations of state, all depend on reduced properties $P_R = P/P_C$, $T_R = T/T_C$
- Use Van Der Waals, Compressibility charts, ...

Ideal gas mixtures

If all gases in the mix are low density: each gas i is ideal, V_i=V_{mix}, T_i=T_{mix}, P_i=y_iP_{mix}
 y_i=mole fraction, x_i=mass fraction; μ_{mix}=y_i μ_i / x_i
 u_{mix} = Σ_i x_i u_i; h_{mix} = Σ_i x_i h_i; same for c_v, c_P

Psychrometry

Absolute humidity ∞=m_{vap}/m_{dry_air}; relative humidity φ=P_{vap}/P_{vap_sat}(T)
 Adding water: ∞↑, T↓, φ↑: maximum when φ=100% ⇒ T=wet bulb temperature
 Cooling: ∞=const, T↓, φ↑: maximum when φ=100% ⇒ T=dew point

Geothermal Energy Capacity Building in Egypt (GEB)

ThermalEngineeringforGeothermalEnergy

5 – Applications of First Law

Control Mass Processes

Thermodynamics for Geothermal Energy 2/13

Adiabatic process

Adiabatic process (q = 0)

If the <u>only</u> energies involved are:

If in addition perfect gas:

 $w = u_2 - u_1$

 \implies - P dv = du

- $P dv = c_v dT$ Dividing by P v = R T:

$$\implies - dv / v = (c_v / R) dT / T$$

By Integration (moderate variation of THence c_v is constant):

$$ln(T_2 / T_1) = (R/cv) ln(v_1 / v_2)$$
$$T_2 / T_1 = (v_1 / v_2)^{(R/cv)}$$

Internal energy *u* &work of changing volume $w = -\int P dv$

(no friction)

But for a perfect gas :
$$c_P - c_v = R$$
; $\gamma = c_P / c_v$
 $> R / c_v = \gamma - 1$

$$T_2 / T_1 = (v_1 / v_2)^{(\gamma - 1)}$$
1
Prove substituting $v = R T/R$

By substituting v = R T/P

$$\Box > T_2 / T_1 = (P_2 / P_1)^{(\gamma - 1)/\gamma}$$

Comparing 1 et 2

$$\boldsymbol{P}_1 \, \boldsymbol{v}_1^{\gamma} = \boldsymbol{P}_2 \, \boldsymbol{v}_2^{\gamma}$$

$$Pv^{\gamma} = const.$$
This is NOT a state equation!In this is a process relation,i.e. relation between states 1 and 2

Polytropic process

Special cases	
Isobaric:	n = 0
Isothermal:	<i>n</i> = 1
Adiabatic:	$n = \gamma$
Isochoric:	$n = \infty$
Slope adiabatic	> ISlope Isot

thermal

$$w = -\int_{v_1}^{v_2} P dv \qquad \qquad w = -\int_{v_1}^{v_2} \frac{P_1 v_1^{n}}{v_1^{n}} dv$$
$$w = \frac{P_1 v_1^{n}}{n-1} \left(\frac{1}{v_2^{n-1}} - \frac{1}{v_1^{n-1}} \right) \qquad \qquad w = \frac{\left(P_2 v_2 - P_1 v_1\right)}{n-1} \qquad \qquad n \neq 2$$

If perfect gas, then:

$$w = \frac{R(T_2 - T_1)}{n - 1}$$

N.B.:

1- This is a process NOT an equation of state! 2- This is NOT the most general process

Steady State Steady Flow (SSSF)
Case I: Flow in ducts:
$$\dot{Q} = \dot{W} = 0$$

Conditions for SSSF:
 $\dot{P} d/dt (state variables) = 0$
 $\dot{P} f m_{in} = \Sigma \tilde{m}_{out}$
 $\dot{M} = \rho vA$
Adiabatic Flow $(q=w=0)$
 $\Delta h + \Delta KE + \Delta PE = 0$
Adiabatic Flow $(q=w=0)$
 $\Delta h + \Delta KE + \Delta PE = 0$
Negligible Friction : $T \approx \text{const} \Rightarrow \Delta u \approx 0$
but $v = 1 / \rho = \text{const}$
 $\Delta P / \rho + \Delta v^2 / 2 + \Delta g z = 0$
Bernoulli !
If friction losses were not
negligible: $\Delta u > 0$
 $\Delta P / \rho + \Delta v^2 / 2 + \Delta g z = -\Delta u$

SSSF: Case II: Heat exchangers: $Q \neq 0$; W = 0

Usually, we neglect:

Pumping and/or mixing work,

KE & PE,

Heat lost to surroundings Compared to heat exchanged

•		•
Q_A	= -	Q_B

Except for:

- Cooled Compressor
- KE for a fan

$$q + w = h_2 - h_1$$
$$w = h_2 - h_1 + \Delta KE$$

GEB

Non-Steady Flow: Filling a tank

Iff rigid tank: V is const., W = 0

Energy balance: $Q - 0 + m_{in}(h_{line} + \frac{1}{2}v^2) - 0 = (m u)|_{after} - (m u)|_{before}$ Mass balance: $m_{in} = m_{after} - m_{before}$ Rigid tank: $(m v)|_{after} = V = (m v)|_{before}$ + model: thermal eq. of state + calorific eq. of state

The 7 Golden questions

"The 7 Golden questions"

To "understand" any problem, \Rightarrow *ask*

Extensive properties given?

None? Only one? More than one?

Example 1: Mixing gases

Gases ~ AirExample 2: The gun
$$P_1 = 100$$
 bar $T_1 = 927^{\circ}C$ 30 180 $T_1 = 927^{\circ}C$ 30 180 Bullet mass = 30 g $y \otimes$ $v_1 = 0; v_2 = ?? m/s$ Ambient Air:
 $P_{atm} = 1$ bar $9 \otimes$ Dims in mmsSystem(s): (closed)States:
Gases (~Air), Bullet, Ambient Air
Conservation(s): EnergyStates:
Gases: initial: $P_1, T_1, V_1 \Rightarrow$ complete
Final: $V_2 \checkmark$ Energies:
Gas: Internal & Work (W_{gas})
Bullet: Work (W_{bullet}) & kinetic energy
Ambient air: W_{amb} Process: Gases: adiabatic
Model(s): Ideal gasExtensive: V_{gas2}, V_{gas2}, m_B $P = P_1(V_1/V)^{\gamma} \Rightarrow P_2 = \checkmark$ Ambient : $W_{amb} = P_{atm}(V_2 - V_1) = \checkmark$ $W_{gas} = -\int_{V_1}^{V_2} P dV = (P_2V_2 - P_1V_1)/(\gamma - 1) = \checkmark$ Bullet: $Q + W = \Delta KE$; $0 + W_{bullet} = -W_{gas} - W_{amb} = (m_{bullet}/2)(v_2^2 - 0);$ $\Rightarrow v_2 = \checkmark(127m/s)$

To retain of chapter 5

Important special cases:

Closed systems If: only (heat & work of changing volume) & ideal gases:

Isochoric (V=C, $P \propto T$, w=0), Isobaric (P=C, $V \propto T$, $w=-P\Delta v$), Isothermal (T=C, $P \propto 1/v$, $w=-RT \ln(v_2/v_1)$ Adiabatic (q=0, if no friction: $Pv^{\gamma}=C$), Polytropic ($Pv^n=C$, if $n \neq 1$: $w=R(T_2 - T_1)/(n-1)$; ...

Fluid machines: usually q=0, $w\neq 0 \Rightarrow w=\Delta h$ (may by $+\Delta v^2/2 \text{ or } -q$). Turbine, pump,

compressor, blower, fan

Open systems + Un-Steady flow

 $d(.)/dt \neq 0, m_{in} \neq m_{out} \Rightarrow$ consider the full First Law

Methodology: the 7 questions:

(System? Conservation? Energies?); (States? Process? Model?); Extensive?

Geothermal Energy Capacity Building in Egypt (GEB)

ThermalEngineeringforGeothermalEnergy

6 – Second Law

Process A is said to be <u>Reversible</u> if there exists another process B allowing <u>System AND Neighborhood</u> to restore their <u>initial states</u>

Non equilibrium process, Dissipation

GEB

Sources of irreversibility – 3

D – Free Expansion

State 1

State 2 $U_2 = U_{1,j} (Q_{12} = W_{21} = 0)$

Process 1 2 1:System: $\Delta U = 0$ okMeighborhood: $Q_{21} > 0$ $W_{21} > 0$ $\square > \square > \square > \square > \square$

1- Motor

$$COP_{hp} = |Q_h| / |W| > 1$$

Equivalence of statements 1

Reversible Cycle

- Process 1-2 Isothermal
 - $T = T_h$
 - |Heat added| = Q_h
- Process 2-3 Adiabatic
 - Heat = 0
- Process 3-4 Isothermal
 - $T = T_c$
 - |Heat rejected| = Q_c
 - Process 4-1 Adiabatic
 - Heat = 0

Net Work $|W| = |Q_h| - |Q_c|$

Carnot Cycle for a perfect gas

For adiabatic processes:

$$T_2 / T_3 = (V_3 / V_2)^{(\gamma - 1)} = T_1 / T_4 = (V_4 / V_1)^{(\gamma - 1)}$$

 $\implies V_3 / V_4 = V_2 / V_1$

$$\implies \eta = 1 - T_c / T_h =$$

$$|Q_{c}| / |Q_{h}| = T_{c} / T_{h} |Q_{c}| / T_{c} = |Q_{h}| / T_{h}$$

Carnot Principles - 1

1 - "Carnot" is the best!

It is **impossible** to construct a motor operting between **2 reservoirs** having an **efficiency that is better** than a **reversible** motor operating between the same reservoirs

Carnot Principles - 2

All other "Carnots" are as good !

All reversible motors working between the same heat reservoirs have the same efficiency

Proof:

- Put them in parallel,
- Reverse one of them
- Use the preceding principle
- The efficiency of a reversible motor, working between 2 heat reservoirs depends only on T_h and T_c (i.e. not function of the nature matter nor the cycle used)

 $\eta_{reversible} = f(T_c, T_h) \forall \text{ system matter} \\ \text{Base for a thermodynamic temperature scale} \\$

Performance of heat engines

Notation:

Absolute value of heat exchanged with the hot reservoir: Q_h Absolute value of heat exchanged with the cold reservoir: Q_c Absolute value of work: $W = Q_h - Q_c$

To retain of chapter 6

Reversible= System AND surroundings can restore initial state *Irreversible if: Friction, viscosity, Heat transfer, Mixing, Free expansion*

Heat engine: A cycle to exchange Work \icide Heat

Motor: Efficiency $\eta = |W| / |Q_h| < 1$ Refrigerator: $COP_{ref} = |Q_c| / |W|$ Heat pump: $COP_{hp} = |Q_h| / |W| > 1$ $|Q_h|$ =Heat exchanged with hot reservoir $|Q_c|$ =Heat exchanged with cold reservoir $|work|=|Q_h|-|Q_c|$

Second Law Statements (all are equivalent)

General: All irreversible Clausius: Heat from hot to cold only Kelvin – Plank: No 100% efficiency engine

 $|Q_h| / T_h = |Q_c| / T_c$

Carnot cycle: Reversible 4-processes (2 isotherm+2 adiabatic)

 \succ Reversible performance \geq Irreversible performance (all Engines)

• **Reversible Motor:** $\eta = |Q_h| - |Q_c| / |Q_h| = 1 - T_c/T_h < 1$

> Reversible Refrigerator: $COP = |Q_c| / (|Q_h| - |Q_c|) = T_c / (T_h - T_c)$

> **Reversible Heat pump :** $COP = |Q_h| / (|Q_h| - |Q_c|) = T_h / (T_h - T_c) > 1$

Geothermal Energy Capacity Building in Egypt (GEB)

ThermalEngineeringforGeothermalEnergy

7 – Entropy

Introduction from physics: Clausius Inequality

For a reversible Carnot cycle:

$$\eta_{Carnot} = 1 - T_c / T_h = 1 - |Q_c / Q_h|$$

 $|Q_h / T_h| = |Q_c / T_c|$

Respecting signes: $(Q_h / T_h + Q_c / T_c)|_{rev} = 0$

For an irreversible cycle:

For the same $|Q_h|$: $|Q_c|$ will be greater

$$\left| \left(Q_h / T_h + Q_c / T_c \right) \right|_{irrev} < 0$$

An equivalent process

Process *ab* is equivalent to process *axyb*

Clausius Inequality for any cycle

GEB

Entropy starting from Clausius

Equation (1) – (2):

 $\int_{12-rev} \dot{Q}/T \, dt \quad \begin{array}{l} \text{Does } \underline{NOT} \text{ depend on the process} \\ \text{As long as it is } \underline{reversible} \end{array}$

Define:

$$\Delta S_{12} = S_2 - S_1 = \int_{12 - rev} \dot{Q} / T \, dt$$

Equation (1) – (3):

$$\int_{12-rev} \dot{Q}/T \, dt - \int_{12-irrev} \dot{Q}/T \, dt \ge \mathbf{0}$$

Applying Clausius Inequality:

Cycle 1A2C1:
$$\int_{12-revA} \dot{Q}/T \, dt + \int_{21-revC} \dot{Q}/T \, dt = 0$$
 (1)
Cycle 1B2C1: $\int_{12-revB} \dot{Q}/T \, dt + \int_{21-revC} \dot{Q}/T \, dt = 0$ (2)
Cycle 1D2C1: $\int_{12-irrevD} \dot{Q}/T \, dt + \int_{21-revC} \dot{Q}/T \, dt \leq 0$ (3)

In General:

$$\Delta S_{12} = \int_{12} \dot{Q} / T \, dt + \Delta S_{irrev}$$

$$\Delta S_{irrev} \ge 0$$

Departure from reversible

Reversible expansion work: $|W_{rev12}|$ Reversible compression work: W_{rev12} IRReversible compression work: W_{12} IRReversible expansion work: $|W_{12}|$ $|W_{12}| \ge |W_{rev12}|$ $|W_{12}| \ge |W_{rav12}|$ $W_{12} \ge W_{rev12}$ "Friction" work: $W_{12} - W_{rev12}$ Reversible process: $Q_{rev12} + W_{rev12} = U_2 - U_1$ IRReversible process: $Q_{12} + W_{12} = U_2 - U_1$ Subtracting: $Q_{rev12} - Q_{12} + W_{rev12} - W_{12} = 0$ $\int_{rev^{12}} \left(\dot{Q}/T \right) dt - \int_{12} \left(\dot{Q}/T \right) dt = \Delta S_{irrev}$ $S_2 - S_1 = \int_{12} (\dot{Q}/T) dt + \Delta S_{irrev}$ where $\Delta S_{irrev} \ge 0$

Gibbs equation

Consider a 'short' process during time *dt*

$$\begin{aligned} & \textbf{Entropy of different phases} \\ & s_2 - s_1 = \int_1^2 \frac{du + Pdv}{T} = \int_1^2 \frac{dh - vdP}{T} \\ & \textbf{Ideal Gas:} \quad s_2 - s_1 = \int_1^2 \left(\frac{c_v dT}{T} + \frac{Rdv}{v}\right) = \int_1^2 \left(\frac{c_p dT}{T} - \frac{RdP}{P}\right) \\ & \textbf{Ideal Gas:} \quad s_2 - s_1 = \int_1^2 \left(\frac{c_v dT}{T} + \frac{Rdv}{v}\right) = \int_1^2 \left(\frac{c_p dT}{T} - \frac{RdP}{P}\right) \\ & \textbf{If isentropic:} \quad s_2 - s_1 = 0 \Rightarrow P_2/P_1 = (T_2/T_1) - R \ln(P_2/P_1) \\ & \textbf{If isentropic:} \quad s_2 - s_1 = 0 \Rightarrow P_2/P_1 = (T_2/T_1)^{c_p/B}; \quad V_2/V_1 = (T_1/T_2)^{c_p/R} \\ & \textbf{Semi-Ideal Gas} \\ & \textbf{Semi-Ideal Gas} \\ & \textbf{Semi-Ideal Gas} \\ & \textbf{If isentropic:} \quad s_2 - s_1 = 0 \Rightarrow \frac{P_2}{P_1} = s^0(T_2) - s^0(T_1) - R \ln\left(\frac{P_2}{P_1}\right) \\ & \textbf{Sform} = \int_{T_1}^{T_2} \frac{c_p dT}{T} - R \ln\left(\frac{P_2}{P_1}\right) = s^0(T_2) - s^0(T_1) - R \ln\left(\frac{P_2}{P_1}\right) \\ & \textbf{Sform} = \int_{T_1}^{T_2} \frac{c_p dT}{T} \\ & \textbf{If isentropic:} \quad s_2 - s_1 = 0 \Rightarrow \frac{P_2}{P_1} = \frac{P_r(T_2)}{P_r(T_1)}; \quad \frac{V_2}{V_1} = \frac{V_r(T_2)}{V_r(T_1)} \\ & \textbf{where:} \quad P_r(T) = \exp(s^0(T)/R); \quad V_r(T) = T \exp(-s^0(T)/R) \\ & \textbf{Sform} = \int_{T_1}^{T_2} \frac{C_p dT}{T} \\ & \textbf{Startoptice} = \int_{T_1}^{T_2} \frac{C_p dT}{T} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p dT}{T} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad \frac{V_2}{V_1} = \int_{T_2}^{T_2} \frac{C_p dT}{V_r(T_1)} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad V_2 = \int_{T_2}^{T_2} \frac{C_p (T_2)}{V_r(T_1)} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad V_2 = \int_{T_2}^{T_2} \frac{C_p (T_1)}{V_r(T_1)} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad V_2 = \int_{T_2}^{T_2} \frac{C_p (T_1)}{V_r(T_1)} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad V_2 = \int_{T_2}^{T_2} \frac{C_p (T_1)}{V_r(T_1)} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad V_2 = \int_{T_2}^{T_2} \frac{C_p (T_1)}{V_r(T_1)} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad V_2 = \int_{T_2}^{T_2} \frac{C_p (T_1)}{V_r(T_1)} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad V_2 = \int_{T_2}^{T_2} \frac{C_p (T_1)}{V_r(T_1)} \\ & \textbf{Startopice} = \int_{T_2}^{T_2} \frac{C_p (T_1)}{P_r(T_1)}; \quad V_2 = \int_{T_2}^{T_2} \frac{C_p (T_1)}{V_1}; \\ & \textbf{Startopi$$

Other cases

Wet Vapor:

$$s = (1 - x)s_f + x s_g$$

Solids, liquids:

 $c_p \cong c_v \cong \text{Constant } c$; $v \cong \text{constant}$

$$s_2 - s_1 = c \ln(T_2/T_1)$$

T-s, h - s Charts

Open steady state steady flow system

Isentropic efficiency

Statistical introduction: Micro & Macro states

Macro - state

Distribution assuming indistinguishable objects Micro - states Distribution assuming <u>distinguishable objects</u>

Major Assumptions:

The distribution of molecules is totally random

All micro-states are <u>equally</u> probable

Thermodynamic probability W

<u>The thermodynamic probability</u> *W* of a macro state = Number of corresponding *micro states*

To get corresponding Micro state:

Number of arrangements of N distinguishable molecules : N!

Number of arrangements of N_i distinguishable molecules in box $j: N_i!$

$$W = \frac{N!}{N_1! N_2! \dots N_J!}$$

Distribution between 2 boxes

Entropy starting from statistics

The distribution of molecules is totally random

>All micro-states are <u>equally</u> probable

>The macro-state of *W* max is the *most probable*

> An isolated system tends <u>spontaneously</u> towards the state of <u>W max</u>

Another formulation of Second Law (direction of a process):

An isolated system spontaneously tends towards *W* max

$$S = f(W)$$

Relation between entropy S and probability W

Obtaining the coefficient

$$\begin{array}{c} \textbf{To retain of chapter 7} \\ \textbf{Clausius inequality for} \\ \textbf{from any general cycle:} \quad \textbf{from a general process:} \quad \Delta S_{12} = \int_{12} \dot{Q}/T \, dt + \Delta S_{irrev} \quad \Delta S_{irrev} \geq 0 \\ \textbf{Clausius inequality for} \\ \textbf{any general cycle:} \quad \Delta S_{12} = \int_{12} \dot{Q}/T \, dt + \Delta S_{irrev} \quad \Delta S_{irrev} \geq 0 \\ \textbf{Clausius inequality for a general process:} \quad \Delta S_{12} = \int_{12} \dot{Q}/T \, dt + \Delta S_{irrev} \quad \Delta S_{irrev} \geq 0 \\ \textbf{Clausius inequality for a general process:} \quad \Delta S_{12} = \int_{12} \dot{Q}/T \, dt + \Delta S_{irrev} \quad \Delta S_{irrev} \geq 0 \\ \textbf{Clausius inequality for a general process:} \quad \Delta S < 0: \text{ Rejecting heat} \\ \textbf{Clausius inequality for a general process:} \quad \Delta S < 0: \text{ Rejecting heat} \\ \textbf{Clausius inequality for a general process:} \quad \Delta S < 0: \text{ Rejecting heat} \\ \textbf{Clausius for ideal gas:} \quad s_2 - s_1 = c_v \ln(T_2/T_1) + R \ln(v_2/v_1) = c_p \ln(T_2/T_1) - R \ln(P_2/P_1) \\ \textbf{Cor an OPEN system: Added terms:} \\ \textbf{d}(m_{cv}s_{cv})/dt + \underbrace{(m_{out}s_{out} - \dot{m}_{in}s_{in}}_{in} \neq \int_{A} \frac{\dot{q}dA}{T} + dS_{irrev}/dt} \\ \textbf{N}_{is} = \frac{h_a - h_b}{h_a - h_b} \\ \textbf{h}_{av} = \underbrace{h_{av} - h_b}_{bv} \\ \textbf{h}_{av} = \underbrace{h_{a$$

Geothermal Energy Capacity Building in Egypt (GEB)

ThermalEngineeringforGeothermalEnergy

Carnot cycle

Process 1-2:

Isentropic Heat $|Q_{12}|=0$

Process 2-3:

Isothermal heating $(T=T_h)$ Added heat $|Q_h|=T_h (s_3-s_2)$

Process 3-4:

Isentropic Heat $|Q_{34}|=0$

Process 4-1:

Isothermal cooling $(T=T_c)$ Chaleur rejetée $|Q_c|=T_c (s_4-s_1)$

$$\eta \, Carnot = 1 - |Q_c/Q_h| = 1 - T_c/T_h$$

Stirling cycle

Process 1-2:

Isochoric heating Regenerated heat $|Q_{12}|=u_2-u_1$

Process 2-3:

Isothermal heating $(T=T_h)$ Added heat $|Q_h|=T_h (s_3-s_2)$

Process 3-4:

Isochoric cooling Regenerated heat $|Q_{34}|=u_3-u_4=|Q_{12}|$

Process 4-1:

Isothermal cooling $(T=T_c)$ Chaleur rejetée $|Q_c|=T_c (s_4-s_1)$

NB
$$s_4 - s_1 = R \ln (v_4/v_1) = R \ln (v_3/v_2) = s_3 - s_2$$

 $\eta \text{ Sterling} = 1 - |Q_c/Q_h| = 1 - T_c/T_h$ $= \eta \text{ Carnot}$

Ericsson cycle

Process 1-2:

Isobaric heating Regenerated heat $|Q_{12}|=h_2-h_1$

Process 2-3:

Isothermal heating $(T=T_h)$ Added heat $|Q_h|=T_h (s_3-s_2)$

Process 3-4:

Isobaric cooling Regenerated heat $|Q_{34}|=h_3-h_4=|Q_{12}|$

Process 4-1:

Isothermal cooling $(T=T_c)$ Rejected heat $|Q_c|=T_c (s_4-s_1)$

NB
$$s_4 - s_1 = -R \ln (P_4/P_1) = -R \ln (P_3/P_2) = s_3 - s_2$$

$$\eta Ericsson = 1 - |Q_c/Q_h| = 1 - T_c/T_h$$
$$= \eta Carnot$$

Rankine cycle

To imitate Carnot, we need an isothermal heating: very difficult??

Isobaric heating: Easy !

How about the isobaric heating of a Liquid – vapor mixture

Problem for the compression of a Liquid – vapor mixture

Problem for the expansion of a Liquid – vapor mixture

Rankine cycle: 1-2-3-4

Cycle Parameters

Effect of boiler exit temperature T_3

Average T_h increases

Upper limit of T_3 : Dictated by:

- Turbine cooling
- Metallurgical considerations

Effect of boiler pressure P₂

Adding heat at ~ constant T_h

Effect of condenser pressure

Same added heat Less rejected geat

Reheat cycle

By reheating at P_i : \overline{T} increases

Regenerative cycle I

Regenerated heat

By reheating feed water by the vapor in turbine: \overline{T} increases Approaches Sterling/Ericson **Regeneration I:** • η increases S• x_4 decreases S

Regenerative cycle II

Organic Rankine cycle

By Sylvain.quoilin at English Wikipedia - Transferred from en.wikipedia to Commons by pashute., Public Domain, https://commons.wikimedia.org/w/index.php?curid=14019848

Evaporator

4

Feed water heaters

Deviations of real cycle

- Loss of pressure in boiler
- Loss of pressure in condenser
- Isentropic efficiency of turbine
- ...

Internal combustion engines (ICE)

Hypotheses

□All processes are reversible

□ Fluid: Gas having a constant chemical composition

Heat is added by an external source

Closed Cycle: flue gases are cooled and reused

Perfect Gas

 $\succ P v = R T$

Constant thermal capacities

Regenerative Joule cycle

Regenerative cycle with Multi stage reheat Joule

Additional

Deviations of real cycle

- Variation of gas thermal capacity $c_p(T)$
- Variable chemical composition (Combustion, Dissociation CO, NO, ...)
- Efficacy of regenerator
- Pressure drops (combustion chamber, regenerator, ..)
- Isentropic Efficiencies of turbine and compressor

$$\frac{\eta_{\text{htr}} = (h_{x'} - h_2)/(h_x - h_2)}{1} = \frac{1}{2} \frac{x' \cdot \frac{x}{y}}{y} = \frac{3}{4}$$

Spark ignition

Compression ignition

> At intake: pure air At end of compression: Fuel injection Ignition by contact of hot air

Additional

Otto Cycle

Thermodynamics for Geothermal Energy 23/33

Diesel cycle

$$q_h = c_P (T_3 - T_2)$$

 $|q_c| = c_v (T_4 - T_1)$

$$\square = 1 - \frac{c_{v}(T_{4} - T_{1})}{c_{P}(T_{3} - T_{2})}$$

Additional

Definition: $r_v = V_3 / V_2$

$$\begin{split} T_4/T_3 &= (V_3/V_4)^{(\gamma-1)} = (V_2V_3/V_4V_2)^{(\gamma-1)} = (r_v/r)^{(\gamma-1)} \\ T_3/T_2 &= V_3/V_2 = r_v \\ T_2/T_1 &= (V_2/V_1)^{(\gamma-1)} = r^{(\gamma-1)} \\ \hline T_4/T_1 &= r_v^{\gamma} \end{split}$$

Otto - Diesel

Same Compression ratio r η Otto > η Diesel

Same T Max. & P Max. of cycle η Diesel > η Otto

Dual cycle

- Heat addition
- Isochore: 2 3a
- Isobar: 3a 3b

(Fast Diesel motors)

Additional

Ignition system

	Spark	Compression
Fuel	Gasoline (light)	Diesel fuel (heavy)
Ideal cycle	Otto	Diesel or Combined
Compression ratio	6 - 10	12 - 25
Efficiency	30 - 35%	40 - 45%
Power/volume	30-50 kW/l	25-40 kW/l
Other	fast response	longer life

Refrigeration and heating cycles

Refrigerators & Heat pumps have in common:

- > They receive work
- > To transfer heat from a cold space
- To heat a hot space

Same cycle may be used for cooling or heating

Refrigeration / Heating cycles include (see below):

- Vapor compression cycle
- > Absorption cycle
- Reversed Joule cycle

Vapor compression cycle

Practical Modifications

Process 3-4: throttling (expansion work is negligeable) State 1: starts at saturation or superheat (to preserve the compressor)

- CFC (ChloroFluroCarbons) gases are banned (Ozone pb)
- HFC (HydroFluroCarbons i.e. no chlore) are replacing
- Gases should have adequate triple and critical points for the application
- No R22, but rather R-410A, R-407C, R-134a

Real Cycle

Absorption cycle

To retain of chapter 8 – *A*

- Joule (Brayton) cycle models gas power plants
- Joule cycle can be improved by reheat and/or regeneration

To retain of chapter 8 – B

- > Same cycle can be used either for cooling or heating purposes
- Refrigeration cycles are either:
 Vapor compression (inverted Rankine)
 Absorption cooling (vapor compression without compressor)
 - Inverted Joule

What is a fluid

Matter undergoing continuous deformation under shear stress Can be a liquid (incompressible) or a gas (compressible)

Flow description

v (x,t) Velocity at any point x and time t
 Uniform flow: v is independent of x
 Steady flow : v is independent of t
 Incompressible flow: 'No' changes of density
 Compressible flow: 'appreciable' changes of density

Conservation equations

For any system:

F

Sources + incoming – outgoing = accumulation

Mass balance

$$0 + m_{in} - m_{out} = dm_s/dt$$

$$\dot{n} = \int \rho \mathbf{v} \cdot \mathbf{n} dA \approx \rho v_n A$$

Momentum

$$+\dot{m}_{in}\mathbf{v}_{in}-\dot{m}_{out}\mathbf{v}_{out}=d(m_s\mathbf{v}_s)/dt$$

Energy

$$\dot{Q} + \dot{W} + \dot{m}_{in} \left(h + KE + PE \right)_{in} - \dot{m}_{out} \left(h + KE + PE \right)_{out} = \frac{d}{dt} \left[m_s \left(u + KE + PE \right)_s \right]$$

For a steady state flow (SSF): $q = \dot{Q} / \dot{m} \quad w = \dot{W} / \dot{m}$ $q + w = \Delta (h + KE + PE)$

For adiabatic flow of liquids: q=0 $w=\Delta P_{pump}/\rho$ $\Delta h=\Delta P/\rho + \Delta u$

Internal flows

Losses in fully developed

$$\Delta P_{losses} / \rho = f L/D v^2/2$$

$$h_{loss} = f L/D v^2/2g$$

L = Pipe length D = hydraulic diameter $= 4*Cross_Area/Perimeter$ f = coefficient fn. of <math>Re = vD/vand relative roughness K/DFor laminar flow: f = Po/Re(Poiseuille no. Po = 64 for circular) For turbulent flow: use chart

For minor losses (elbows, valves, filters, ...) $\Delta P_{losses} / \rho = k v^2 / 2$ $h_{losse} = k v^2 / 2g$

k is the loss coefficientobtained empirically.(See tables)

Additiona

Classification of Fluid Machines

Additiona

Fundamentals of Turbo Machines

- u : wheel velocity = $\omega r \propto N D$ (N is the r.p.m.)
- v : absolute velocity
- R : relative velocity
- w : tangential component of v

Tangential momentum: $\rho Q \cdot w$

Fluid Torque= $\rho Q \cdot (w_1r_1 - w_2r_2)$ Fluid Power = $\rho Q \cdot (w_1 r_1 - w_2 r_2) \omega$ $= \rho Q \quad (\Delta P/\rho) \quad (\Delta P/\rho = gH)$ $\implies gH = w_1 u_1 - w_2 u_2$

Performance Description

For a given propeller design: $u \propto ND$ (N speed, D outer diameter) $Q \propto u$ Area $\Rightarrow Q/ND^3 \sim Const C_Q$ $gH \propto u^2 \Rightarrow gH/N^2D^2 \sim Const C_H$

If N_s is defined as (N in rpm) N_s = NQ^{0.5}/(H)^{0.75} Q in l/s ; H in m Specific speed in SI (N in rad/s) $N_s = C_Q^{0.5}/C_H^{0.75}$ $= NQ^{0.5}/(gH)^{0.75}$ D disappears!

Types of pumps	Specific Speed		
Slow speed radial flow	10-30		
Medium speed radial flow	31-50		
High speed radial flow	51-80		
Mixed flow	81-160		
Axial flow	160-500		

Axial Flow

Radial Flow

High speed and/or Q; low ΔP

Low speed and/or Q; High ΔP

Typical Performance Curves

To retain for chapter 9

Geothermal Energy Capacity Building in Egypt (GEB)

Thermal Engineering for Geothermal Energy

10 – Heat transfer

Heat Transfer Modes

Conduction mono – dimensional 1

Conduction mono – dimensional 2

If 2 bars identical in series, With $\Delta T = T_A - T_B = T_B - T_C$ \Rightarrow Same \dot{q} in each bar i.e. If *L* doubles & ΔT doubles: \dot{q} does not change $\Rightarrow \dot{q} = f(\Delta T / L, matter)$

NB: \succ If $\Delta T/L = 0$ then $q \doteq 0$

$$\dot{q} = f(\Delta T/L, mat.)$$
$$\cong k (T_A - T_B)/L$$

Thermal Conductivity

$$\dot{q} = -k (T_B - T_A)/L$$

Limit for
$$L = dx \rightarrow 0$$
:

$$\dot{q} = -k dT/dx$$

Fourier Law

Conduction in a variable section

Transfer by convection

In the boundary layer (Low velocity): $\dot{q} \approx (k/\delta) (T_p - T_{\infty})$

Case of « turbulent » exchange:

Due to eddies, an exchange of packets of fluid (hot/cold) takes place through surface a-a >Associated heat: $q \propto (T_A - T_B)$ <u>a</u>._(._____a.___a.____a.____a.

In general:

$$\dot{q} = h \Delta I$$

Newton's law of cooling

Transfer by radiation: 1- absorption

2- Emission

In case of equilibrium, energy absorbed = energy emitted

At the same temperature, Black body (b.b.) emits the most: $\dot{q}_{bb} = \sigma T^4$ Black body (b.b.) emits the most: $\dot{q}_{bb} = \sigma T^4$ Stefan - Boltzmann

In general, $\dot{q} = \varepsilon \sigma T^4$ where $\varepsilon = \text{emissivity} \le 1$

Kirchhoff Law: in case of equilibrium (same temperature)

 $\alpha = \alpha$

Additional

Fins

Geothermal temperature gradient

According to the **International Union of Geodesy and Geophysics**

Geothermal out power = 44.2 TW

> 2 times world consumption
BUT low density: 0.087 W/m²

Replenished by 30 TW of radioactive decay

Geothermal thermal gradient in earth crust ~ 25 – 30°C/km

Soil heat transfer properties

Material	Remarks	ho Density $(\text{kg m}^{-3} \times 10^3)$	c Specific heat (J kg ⁻¹ K ⁻¹ × 10 ³)	C Heat capacity (J m ⁻³ K ⁻¹ \times 10 ⁶)	k Thermal conductivity (W m ⁻¹ K ⁻¹)	κ Thermal diffusivity (m ² s ⁻¹ × 10 ⁻⁶)	μ Thermal admittance (J m ⁻² s ^{-1/2} K ⁻¹)
Sandy soil (40% pore	Dry	1.60	0.80	1.28	0.30	0.24	620
space)	Saturated	2.00	1.48	2.96	2.20	0.74	2550
Clay soil (40% pore	Dry	1.60	0.89	1.42	0.25	0.18	600
space)	Saturated	2.00	1.55	3.10	1.58	0.51	2210
Peat soil (80% pore	Dry	0-30	1.92	0.58	0.06	0.10	190
space)	Saturated	1.10	3.65	4.02	0.50	0.12	1420
Snow	Fresh	0.10	2.09	0.21	0.08	0.10	130
	Old	0.48	2.09	0.84	0.42	0.40	595
Ice	0°C, pure	0.92	2.10	1.93	2.24	1.16	2080
Water*	4°C, still	1.00	4.18	4.18	0.57	0.14	1545
Air*	10°C, still	0.0012	1.01	0.0012	0.025	21.50	5
	Turbulent	0.0012	1.01	0.0012	~125	$\sim 10 \times 10^{6}$	390

Sources: van Wijk and de Vries (1963), List (1966).

Transient conduction in near soil

Governing equation:

$$\frac{\partial T(x,t)}{\partial t} = \alpha \frac{\partial^2 T(x,t)}{\partial x^2}$$

Thermal diffusivity α in m^2/s

Initial condition:

 $T(x,0) = T_i$

Boundary conditions:

$$T(x \to \infty, t) = T_i$$
$$T(x = 0, t) = T_s(t)$$

Effect of sudden surface T change

Assuming: $T_i = 20^{\circ}C$, $T_s = 40^{\circ}C$ $\alpha_{sand} = 2.4 \ 10^{-6} \ m^2/s$, $\alpha_{sat \ clay} = 7.4 \ 10^{-6} \ m^2/s$

Effect of diurnal variations

Assuming diurnal swing is: $T_{min} = 0^{\circ}C$, $T_{max} = 40^{\circ}C$ $\alpha_{sand} = 2.4 \ 10^{-6} \ m^2/s$, $\alpha_{sat \ clay} = 7.4 \ 10^{-6} \ m^2/s$

Effect of annual variations

Assuming annual swing is: $T_{min} = 0^{\circ}C$, $T_{max} = 40^{\circ}C$ $\alpha_{sand} = 2.4 \ 10^{-6} \ m^2/s$, $\alpha_{sat \ clay} = 7.4 \ 10^{-6} \ m^2/s$

To retain for chapter 10

