
Geothermal Energy Capacity Building in Egypt (GEB)

Thermal  Engineering  for  Geothermal 
Energy

  

Faculty of Engineering

Cairo University



Thermodynamics for Geothermal Energy 2/10

Objectives – Contents – Outcomes (1)

❑  An introductory overview of thermodynamics 

❑  Some basic aspects of fluid mechanics 

      (flow in pipes, fluid machines)

❑ Some basic aspects of heat transfer 

      (with a special focus on conduction – heat transfer in soil)

The course will present the fundamentals of these topics in a classical approach, creating a solid base that will 

allow the students to analyse, in later subjects, energy systems in general and geothermal systems in particular.

Objectives

❑An introductory course of graduate physics 

Prerequisites
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Objectives – Contents – Outcomes (2)

❑ Basic concepts

❑  Energy concepts

❑ Pure substance & Mixtures

❑ First Law

❑ Second Law

❑ Entropy 

❑ Power cycles

❑ Refrigeration cycles

Contents 

Part I – Thermodynamics 

❑ Fluid properties & basic laws

❑ Losses in pipes

❑ Description of fluid machines

❑ Modes of heat transfer

❑ Conduction basics  

❑ Conduction in variable 

sections & fins

❑ Heat transfer in soil

Part II – Transport phenomena
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Objectives – Contents – Outcomes (2)

At the end of this course, trainee should be able to:

❑ Identify, quantify different energies, and perform energy balances 

❑ Evaluate thermodynamic properties of matter

❑ Understand implications of Second Law

❑ Evaluate entropy and understand its charts

❑ Understand and analyse power and refrigeration cycles

❑ Evaluate losses in a hydraulic loop 

❑ Select appropriate fluid machine

❑ Perform simple heat transfer estimations, especially conduction

❑ Understand heat transfer mechanisms in soil

Outcomes 
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Objectives – Contents – Outcomes (2)

❑ Introduction to Thermal Systems Engineering: Thermodynamics, Fluid 

Mechanics, and Heat Transfer. Michael J. Moran, Howard N. Shapiro, 

Bruce R. Munson, David P. DeWitt. John Wiley, 2003

❑ Fundamentals of Engineering Thermodynamics. M. J. Moran, H.N, 

Shapiro, D. N, Boettner, M. B. Bailet. John Wiley, 2018

❑ Fluid Mechanics. F.rank M. White. McGraw Hill, 2009

❑ Fundamentals of Heat and Mass Transfer. F. P. Incropera, D. P. Dewitt, 

T. L. Bergman, A. S. Lavin. John Wiley, 2007

References  
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Why Thermodynamics?

Life is nothing but: exchanges or transformations!

Material Im – Material Knowledge

Feelings …

Mass

Charge

Force

…

Energy

Science of energy transfer and conversion

Energy is not only 

calorific or mechanical!
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History of Energy

Geothermal, 

Biomass,

Waves, …

Pre-Industrial

Industrial

New

Energies 
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Geothermal energy: Source, Applications

Can be used to: Produce electricity, to heat, or to cool

➢ How energy changes its form? (thermodynamics)

➢ How water moves? (fluid mechanics)

➢ How heat moves? (heat transfer)

Need to understand:
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Place of thermodynamics academically

Thermodynamics 

Heat and mass transfer – Fluid mechanics

…

Internal 

Combustion 

Engines

Basic Sciences

Applied Engineering Sciences

Math – Physics

Mechanics – Chemistry 

Basic Engineering Sciences

Power plants

Refrigeration

& Air Conditioning

Physics of semi-conductors

Chemical industries …
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To retain of chapter 1

➢ Life depends on energy

➢ Energy crisis – environmental impact: 

   Renewable energies

   Geothermal

➢ Human development is related to energy

➢ Applications of thermodynamics are endless

➢ Course objectives and contents
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Terminology: “System”
“All”

Universe!

A system

“Part” of interest

Neighborhood

Remaining!

open systemclosed system

control volume

Part = 

space zone?

control mass

Part = 

materiel portion?

Energy no         crosses   crosses

Matter no   no   crosses

isolated system

Boundaries
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Macro or Micro?

Macroscopic view

system

Microscopic view

➢Classical Thermodynamics

Matter is a continuum
Essential part of the course

➢Statistical Thermodynamics

Matter is discrete
To better understand
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State

The state of a system:

Its nature and characteristics

AT a given instant

State Properties :

Quantitative description of the state 

AS IS, 

NOT how did the system reach it (the trajectory)

State property  Property of the trajectory

Distance along path (trajectory)

Distance from origin (state)
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Equilibrium

Equilibrium:

Inability to perform a spontaneous

change of state

State properties of a system

CANNOT be defined outside EQUILIBRIUM

Pressure of a system Uniform Pressure

Additional
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Process

Process : continuous transition from state A to state B

A process in “equilibrium”?!!

A process in “quasi- equilibrium”

Cycle : 

A set of processes ending by the initial state

d

Additional
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State Properties
➢Extensive Property :

• Proportional to size: Mass, volume, energy, charge, …

➢ Intensive Property :

• Independent of size (same value at each portion):

 Temperature, pressure, electric potential, …

➢Specific Property :
• Ratio of two Extensive Properties: 
 specific volume (=1/Density), specific energy, …

Internal vs external Property : (Temperature vs speed)

60kg

37 C

30kg
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Concepts and Laws

“All”

the universe

again!

relations

Ex:

Charges – Attraction Force

Mass – Force – Laws of Newton

The world is unified (and unique!)

But, to understand it, … humans have to «analyze it»

Define concepts

Define relations 
between concepts

A Principle
(Law)

• A fact proven by experience

• Other theorems are deduced from principles

Additional
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Dimension versus unit

Distance meter, inch, foot, …

Dimension Units

Time second, hour, day, month, …

Mass kilogram, pound, ton, …
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SI system

Basic SI Units:

Length  meter  m

Mass   kilogram kg

Time   second s

Electr. Current Ampere A

Temperature  Kelvin K

Q. of matter  mole  mol

Lumin. Intensity candela cd

Derived SI Units :

Force  Newton  N   = kg m/s2

Pressure Pascal   Pa =  N / m2

Energy Joule    J    =  N m

Power Watt    W   =  J / s

…

Sup. SI Units :

Plane Angle  Solid Angle

   radian    steradian

     rad           sr

Multiples of Units:

M  Mega 106

G Giga 109

…
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Density & specific volume

 =

V

m
lim 0V




 → 

0

V

 = mass of a mole (in g/mol or kg/kmol)

Specific (Intensive) Property 

Molar Density

Specific Volume

Molar Specific Volume

Molecular Mass

SI Units : kmol/m3

v = 1/

vv =

SI Units : m3/kg

SI Units : m3/kmol

Definition of Density:
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Defining Pressure

0

A
Specific (Intensive) Property

Force due to the impact 

of molecules on the wall

SI Units: Pa = N / m2 = kg/ms2

Other units 

M Pa = 106 Pa; 

bar    =105 Pa; 

atm   = 1.013 bar; 

psi    = 1lb/in2= 6.8948 kPa

torr   = 1mmHg=133.32 Pa

After you!

Definition of pressure: 0

F
lim AP

A
 →


=
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Measuring Pressure

to measure Patm: 

Barometer:

Patm against vacuum

0

Atmospheric

Pressure

P

Absolute

Pressure > 0

Relative Pressure

« gauge » (+ ou -)

P

An example for high P: Bourdon

An example for low P

Manometer

Pabs – Patm = Pgauge=  g h

Pabs

Patm

h
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What is Temperature?!

Temperature is a measure of the ability: 

to transfer calorific energy

Intensive Property

of molecules to transmit their excitation intensitymicro:

macro:
chaotic

Problematic of an objective scale for an intensive property

Extensive property is easy to measure: 

1
m

Intensive property is difficult: 

70C
70C

1kg
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What is a Thermometer?

Example : the volume of a liquid 

(mercury thermometer)

Question : 

What is the relation:

  Thermometric Property (TP)   T?!

Thermometer

Temperature
another
property

effects on

Thermometric Property (TP)
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Thermal

Equilibrium

The “Zero’th” Law!

If Body A Body B

And Body A Body C

Then Body B Body C

Defining equality :

Hence, we can define an arbitrary temperature scale :

Colder Hotter

For a rational scale : 

The thermodynamic temperature scale (see below)

Defining difference :
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Thermometers

h

Mercury

Thermometer

fixed points

T=ah+b

P h

Ideal Gas

Thermometer ***

Pressure of a gas

at fixed volume

T = aP

Resistance

Thermometer

Resistance of a metal (Platinum)

R

R = a + bT + cT2

G

Thermocouple

T1 T2

V = S (T2-T1)Metal A

Metal B

V
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Importance of assumption!

--25

1.00020

1.002925

1.012150

1.025975

1.0435100

Gas 

Thermo-

meter
Water Therm. Alcohol Therm. Mercury Therm.

t v

-

0

6.2

27.5

59.4

100

t*

1.2167

1.2475

1.2800

1.3170

1.3604

1.4116

-18.8

0

19.8

42.4

68.8

100

v t*

0.073220

0.073556

0.073890

0.074225

0.074561

0.074898

-25.0

0

24.9

49.9

74.9

100

v t*

( )
( )

0

100 0

* 100t
−

=
−

v v

v v

v  specific volume (cm3/g)

t* Temperature assuming linear in v (C)
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Conservation of mass

• Not relativistic!

outin
s mm

dt

md
 −=

= dVms 

If the density  was uniform then ms =  V 

(V is the volume) otherwise:

If  and the normal speed v were uniform 

then    =  A (v t) / t =  v Am

= dAm votherwise:

mass of 
System: ms

Entering mass
per second    inm

Leaving mass
per second    out

m

System
v t

Area of 

Section A

Volume entering 
during the time t = v t A

To find m
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To retain of chapter 2
➢ System: Control mass (closed), Control volume (open), Isolated

➢ State property: (NOT trajectory), intensive vs extensive, specific

➢ World unity: Relation between concepts and laws, principles 

➢ Dimensions and units: SI 7 basic units, derived units

➢ Specific volume: (specific) v = 1 /   (per unit mass or unit mole)

➢ Pressure: (specific) absolute (>0), gauge, units 

➢ Temperature: (intensive – difficulty), 0th Law, thermometric properties, fixed points, 

            thermometers, ideal gas thermometer

➢ Conservation of mass:
outin

s mm
dt

md
 −=

=  v A if uniform 

= dAm v
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Energy: definition, simple forms

Define

specific forms 
Conservation Law 

Generalize The concept of ENERGY

~ Capacity to perform 

a change

To define energy:

Reference

Level
“0”

E

DE

It is only D that counts!

Energy 

crossing

boundaries
Energy stored 

in the system

Energy is classified into

Is characterized by the Power

(Rate of energy transfer)

i.e. in Watt = Joule/s

Is measured in Joule
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Different forms

➢ Chemical,

➢ Nuclear,

➢ Optic,

➢ Acoustic,

➢ Magnetic, ...

➢ Mechanical (work)

➢ Internal

➢ Calorific (heat)

➢ Electric, …

Forms of energy:

Will be treated

In some 

details

Other forms
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Mechanical Power and Work

W
•

= •F v

F
v

Mechanical Power :

Mechanical Work :  W =
2 2 2

1 1 1

t t

t t
W dt dt d

•

= • = •  
x

x
F v F x

+ve -ve

New Sign Convention for work 

USED here

System

Mechanical power is: Power crossing the boundaries of a system
due to the action of a force that causes a displacement velocity

Force exerted on the system

Displacement velocity of matter due the force

F

v
Force exerted by the system

New convention

Classic convention

Old convention 

has opposite signs

System 

boundaries

AB FAFB

0A AW = F v0B BW = F v

0A BW + =

v
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Examples of point forces
Power = F.v

System

Kinetic Energy : 

   linear ½ m v2

   rotational ½ Iw2

Work of a force

causing acceleration

ext sys m d dt= − =F F v

( )
2

1

t

s
t

W m d dt dt= • v v
2

1

v

s
v

W m d= • v v

( )2 2

2 1

1
v v

2
sW m= −

Work of a force

against Gravity

ext sys m= − = −F F g

( )
2

1

t

s
t

W m dt= − • g v

2

1

g
z

s
z

W m dz= 
( )2 1gsW m z z= −

Potential Energy : 

  m g z

Power = F v = F  (r w) = Tw

Torque * angular speed

F.v

System

vFext

Fext

g= -gk

z

v

extF

sys ext= −F F

Force on the system

Force by the system
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v is the materiel velocity

x is the elongation 
(= Length – Free length)

F is the force on the system= k x

Work by an elastic body

x
0Free Length 

F

v

F
v

F
v

F
v

Power W = F v

Work 
2

1

t

t
W dt= • F v

2

1

W k d= •
x

x
x x

( )2 2

2 1

1

2
W k x x= −

Compression W > 0
.

Expansion W < 0
(if against force)

.

Stretching 
W > 0
.

Relaxing 
W < 0

(if against force)

.

F
v
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Work by an electric field on a charge
Electric
field
 E

charge q

velocity v

Power = – q E . v

Work 
2

1

t

t
W q dt= − • E v

2

1

W q d= − •
x

x
E x

Electric Potential V (x) = W /q = d


− •
x

E x

I1

V1

I5

V5
I4

V4

I2

V2

I3

V3

Power entering node 1: V1 I1

Power received by the circuit: Si Vi Ii

Potential at node 1:      V1 = work /charge
Current entering node 1: I1 = charge /time

(Volt)

Work W = V I dt

++
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system

Work of distributed forces 
A – Over a surface

( )2

1

t

m
t A

W dA dt= −   S v

vs

velocity of

the surface

velocity of

matter at the 

surface

vm

Surface stress

Of system on surroundings

(force/unit area)
dA

Normal

Component :

Pressure

S

P

n

n

Unit external Normal

Closed System :  

Open System :  

m
A

W dA= −  S vPower :  

Work :  

(matter crosses)

t

n.vs = n.vm

n.vs ≠ n.vm
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Case 1: Work of Changing Volume

W PdV= −

W PAdx PdV= − = − 

dx

P
A

NB: W depends on states 1,2 

AND the PATH

W1A2  W1B2

2

1

t
s

t A

d
W P dA dt

dt

  
= −  

  
 

x
n

If:

Then:

P

V

1

2

W1A2

P

V

1

2

W1B2

A

B

➢ No friction (S = P n)
➢ Equilibrium (pressure P uniform)
➢ Closed system ( n.vs = n.vm)

W Fdx= −

dA

n

dxs

( )2

1

t

m
t A

W dA dt= −   S v

2

1

t

t

dV
W P dt

dt
= −
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Work of changing volume is NOT always -PdV

In the ideal case (no friction)  work is called Wideal.

Evidently:  Wactual – Wideal >  0 

Whether work is received by or given to the system

N.B. 1:-  P dV  is not always work !

Fan work

− P dV = 0

W > 0

Void

Free expansion

− P dV  <  0

W = 0

The gas expands against void:

 No exterior force  No work!
Since dV = 0

N.B.:
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Case 2: Flow work

( )2

1

t

m
t A

W dA dt= −   S v

( ) ( )
2

1

t

flow in m
t A

W dt P dA= −   n v

1

2

F1 = P1A1

F2 = P2A2
vDt = l1

To force the fluid at entry:

W1 =  P1 A1 l1 = P1 V1

At exit:  W2  =  – P2 V2

➢ No friction (S = P n)
➢ Equilibrium (pressure P is uniform
 over each section)
➢ Open System (n.vs ≠ n.vm)
➢ Steady state (independent of time)

If:

vDt = l2

Then:

Flow work     =    P1 V1 – P2 V2

( )

( )

.flow in m
A

W P t dA

P t V t PV

= − D

= D  D =

 n v
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Useful work of an open system

Work of 

changing volume

Useful part of 

Work for a control

volume

N.B.: d PV = PdV + VdP, i.e.: ( )  +=−
2

11122 VdPPdVVPVP
2

1

Flow

work

=

turbine

high pressure

low pressure

high 
pressure

low 
pressurehigh 

speed

( )
2

1 1 2 2
1

2

1
VdP PdV PV PV= − − − 

Pelton wheel
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Work of Distributed Forces 
B – Over a line

Coefficient of Surface Tension: 

s = Force / unit length

Force = s p D

Force = s L

Meniscus

(thin film, 

e.g. soap)

Work on the Line

W =   s L dx
    =   s dA

D

L

dx

Additional
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Suppose we have N molecules each of mass m

         Mass of body M = m * N

       is the absolute velocity of molecule i

Internal Energy (qualitative)

iv

1

1 N

avg iiN =
= v v

*

i avg i= +v v v
Body velocity 

= average velocity 

We can define:

Deviation,

vibration

Kinetic Energy of N molecules:
12

N

i ii

m
KE

=
=  v v

By substituting

* * *

1 12 2

N N

avg avg i i avg ii i

M m
KE m

= =
=  +  +  v v v v v v

KE of body KE of molecules = 0 

(average of deviations)

iv

avgv

*

iv

=
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Internal Energy : Generalization

Internal Energy U = (SKE + SPE + S Chemical + S Nuclear + ..) of molecules

Stored Energy

Similarly:

In general:

Kinetic Energies KE KE of the body KE of random molecules speed= +

Potential Energy PE PE of the body= +

u = U/m = Specific Internal Energy

Internal Energy

PE of intermolecular forces
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Heat

• A power that crosses the boundary

• Due to a temperature difference

• NOT associated with a transfer of matter

Q

Heat power     is:
+ve -ve

Sign Convention

Heat transferred is path dependent

Heat

Work
U + Flow Work

DU

System: Water in a tea pot. 

What are energies involved?

Distinguish between heat (energy that crosses)

and internal energy (energy stored in a hot body)

!

!

!
No heat!

(associated

with a flow)

Q

Heat Power in Watt

Heat : Q in Joule
Q

Q

Enthalpy H
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It can be transferred or transformed, but:

S Energies before = S Energies after, a process

1st Law for a Control mass

Qin

Win

Qout

Wout

cycle

For a control mass undergoing

a Complete cycle:

S Crossing Energies = Qnet + Wnet = 0

Energy is conserved

Final state  = Initial state

Stored Energies before = Stored Energies after

Qnet =  Qin – Qout Wnet =  Win – Wout
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Total Internal energy E is a State property

For a process:

The sum of energies crossing 

is independent of path: Q12 + W12 =   E2 -  E1

Total internal Energy 

( ) ( )
1 2 2 1

0
A B

Q W dt Q W dt+ + + = 
( ) ( )

1 2 2 1
0

A C
Q W dt Q W dt+ + + = 

For the cycle 1A2B1:

For the cycle 1A2C1:

By subtracting: ( ) ( )
2 1 2 1B C

Q W dt Q W dt+ = + 

( ) 2 1
12

Q W dt E E+ = −

Q + W =   dE/ dt
. .

D E = D U + D KE + D PE + ... 

=
2121 AA dtQQ 

Process:

Work:

Heat:

1A2

=
2121 AA dtWW 

=
1212 BB dtQQ 

=
1212 BB dtWW 

2B1 2C1

=
1212 CC dtQQ 

=
1212 CC dtWW 

1

2

v

P

A

B
C
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1st Law : General form

( ) ( ) ( )in out sin out s

d
Q W m h KE PE m h KE PE m u KE PE

dt
 + + + + − + + = + + 

( ) ( ) ( )in out sin out s
Q W m h KE PE m h KE PE m u KE PE + + + + − + + = D + + 

d(ms es)/dt

e  +  P v  =

 (u + P v ) + KE + PE + ..

h
Specific

Enthalpy

Sum of received powers =rate of increase of stored energies

Q
.

W
.

mout (e + P v)out
.

min (e + P v)in
.

Energy carried by 

entering mass

e  = E / m

( )q w h KE PE+ = D + +

For a steady state flow (SSF):

d(.)/dt =0;  min = mout= m
. . .

q  = Q / m
..

w  = W / m
..

( )q w u KE PE+ = D + +

For a closed system:  

min = mout= 0 q  = Q / ms w  = W / ms
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To retain of chapter 3 - A
➢ Energy is the ability to produce a change, many forms

3 conditions:
• Crosses system boundaries, 

• due to force ON the system, 

• producing displacement

W
•

= •F v W =
2

1

d•
x

x
F x

Power transmission:

Elastic

Electric

Power = Tw

( )2
1

2
2

2

1
xxkW −

−
=

Power: -Si Vi Ii

Examples

of work 

of point

forces:

➢ Work of changing volume: if:

W PdV= −

▪  No friction (S = P n)
▪  Equilibrium (pressure P uniform)
▪  Closed system ( n.vs = n.vm)

➢ Work depends on the process (the path) 

➢ Work of surface tension: 

➢ Flow work is: P1V1 – P2V2

➢ For open system:
2

1
VdP

 s dA

Work W, Mechanical power Ẇ:



Thermodynamics for Geothermal Energy 21/21

To retain of chapter 3 - B

➢ Special case, closed system:

➢ The general form of the First Law is:

➢ Special case, Steady Flow:

( ) ( ) ( )in out sin out s

d
Q W m h KE PE m h KE PE m u KE PE

dt
 + + + + − + + = + + 

( )q w u KE PE+ = D + + ( )q w h KE PE+ = D + +

Energies (kinetic, potential, and chemical) of molecules: State property

• Crosses the boundary

• Due to a temperature difference

• NOT associated with a transfer of matter

➢ Internal energy + Flow work  Enthalpy

Internal energy U:

Heat power Q̇ :
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Pure substance & gas mixtures
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Definitions

Homogeneous and invariable chemical

Composition in all phases

Pure substance

A Group of molecules having:

➢ Homogeneous chemical Composition

➢ Homogeneous physical Properties

Examples 

▪ Gas

▪ Liquid

▪ Solid

- various crystalline structures

Phase

H2O, CO2, …

But air ??
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Evaporation at Constant Pressure 1

T

v

P=P1

Superheated

vapor

Saturated

Liquid

Saturated

Vapor
Wet

Vapor

Liquid

Gas

Compressed

(Sub cooled)

Liquid

Evaporation at constant pressure  constant temperature

a

b

c

d
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Saturation Lines

Evaporation at Constant Pressure 2
T

v

P1

P2>P1

Superheated

vapor

Compressed

(Sub cooled)

Liquid

vcr

Tcr

PcrCritical

Point

Saturated

Liquid

Saturated

Vapor

Wet

Vapor

GasLiquid

C

c

d

a

b

c'

d'

a'

b'

P > Pcr

vapor
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P2

Fusion and Sublimation

L

S

G

S+G

L+G

S+LT

v

P1

P4

Triple Line (S+L+G)

G Gas

L Liquid

S Solid

Fusion

Changing phase

 at constant pressure

 constant temperature

Sublimation

P3

If we heat a solid at const P:  fusion at constant T  evaporation at constant T

The operation can be repeated at other pressures => lines of saturation

If we heat a solid at very low pressure:  sublimation at constant T

e

f
g

a

k
l m

n

x
y

z
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Ice cubes float !?

L

S

G

S+G

L+G

S+L
T

v

!
Water:

A special case

Energy needed 

to transform 1 kg

From

Solid

Liquid

Solid

To

Liquid

Vapor

Vapor

Latent

Heat

of:

Fusion

Evaporation

Sublimation

Ice cubes float:

Solid Density < liquid density

Ice cubes shrink 
during fusion
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Thermodynamic Surfaces

P

T

Critical

Point

S
L

G

Fusion

Evaporation

Sublimation

Triple

Point

L

S
G

S+G

L+G

S+L
P

v

T1

T2

T3

L

S G

S+G

L+G

T

vP1

P2

P3

S+L
P

re
s

s
u

re
 P

P2

P1

P3

Additional
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Thermodynamic Tables

For wet vapor :

v = x vg + (1-x) vf

   = vg    - (1-x) vfg

   = vf    + x vfg

Dryness Fraction

(quality)

x = mG / (mL + mG)

Thermodynamic 
(pressure or temperature)
saturation Tables:

P T vf vg 

… … … …
… … … …

Thermodynamic
superheat Tables:

 P=… P=… P=… 
T=… v =… v =… v =…
T=… v =… v =… v =…
T=… v =… v =… v =…

For a compressed liquid :
If no tables, use:
v (T,P)  vsatL (T)

Online data, ex: 
https://webbook.nist.gov/chemistry/fluid/
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P
re

s
s

u
re

 P

Degrees of Freedom  F

Simple Case 1: Pure substance (C = 1)
                Single phase (P = 1)

F = Minimum Number of state variables necessary to define the state

In this case: Number of Degrees of Freedom

= Number of different forms of energy exchange:

If only: 

• Heat 

• work of changing volume

F = 2

To localize the state of a gas, 
We need to know (P, T), (P, v) or (v, T)

Example :

P = Number of Phases C = Number of chemical componants
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Gibbs Phase Rule

General Case : If  number of components C > 1

Every new component adds a new degree of freedom

F = C – P + 2
Gibbs Phase Rule for

Two forms of energy exchange

Simple Case 2: Pure substance (C = 1) 
2 phases in equilibrium (P = 2)

Equilibrium imposes a condition

F = 2-1 = 1

To localise the state  

Of a saturated vapor, 

It is sufficient to know (P) or (T)

Example :

P
re

s
s
u

re
 P
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State Equations

Assume a number F (degrees of Freedom) of state variables are given:

All other state variables can be expressed in terms of them 

 These relations are:
State Equations

➢ Thermal equation of state :

➢ Calorific equations of state

(v = 1/r)

Mainly 2 kinds:

f ( P, T, v) = 0

u = f1 ( P, T)

h = f2 ( P, T)
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Perfect (Ideal) Gas

Hypotheses: 

➢ Low density

➢ volume of molecules Negligible

➢ intermolecular forces Negligible

➢ time of impact Negligible

➢ Molecular collisions are perfectly elastic 

   (No energy loss during impact)

x

y

z
LPlan W

of area A

Change of the momentum of a particle

during collision with the plan W (component in y):

D (momentum) = m0 (vy – (– vy) = 2m0vy

Average Time between 2 collisions on the plan W: Dt = 2 L / vy

Pressure due to a molecule:

P1 molecule = Force/A = 

                    [D (momentum)/Dt ]/A = m0vy
2 / V

P V = m0 S vy
2

For N molecules:

Plan W'
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Equation of State for a perfect gas

P v  =  R T
_ _

P v  =  R T

P V =  n R T

_

P V  =  m R T

Gas Constant:   R = R / m

(m molecular mass)

_

Principle of equipartition of energy:

S vy
2= S vx

2= S vz
2= 1/3 S v2= 1/3 N vrms

2

perfect gas  T  average kinetic energy of a molecule k T = 1/3 m0 vrms
2

Boltzmann

Universal Gas Constant

P V = N k T = n NA k T = n R T

moles Avogadro R = NAk = 8314.5 J/kmol K

_

_

P V = m0 1/3 N vrms
2

n = m / m

(m mass of gas)

P V = m0 S vy
2
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Real gases Equations of state

➢ Volume of molecules non negligeable

➢ Intermolecular forces non negligeable

Van der Waals (VDW):

 (P + a/v2) (v - b) = R T (a, b  const.)

a & b are functions of PR=P/Pc; TR=T/Tc; 

!
➢ The precision of VDW is better than Pv=RT; BUT not perfect 

➢ The error of  compressibility < 2.5% for all gases

Compressibility: Z = Pv / RT

Law of corresponding states :

For all Gases : Z = f (PR, TR)  

     (see compressibility charts)

If gas at low density:

(ex. PR <0.1 and/or TR >5)  then Z1

i.e. almost a perfect gas
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Energy Properties

J

J/kg

J/kmol

Total

Internal

Energy

E

e

e

Energy

U

u

u

Enthalpy

H

h

h

Thermal Capacities

(Specific heats)

Thermal Capacities at constant volume

cv  =  u /  T |v 

cP  =  h /  T |P 

Thermal Capacities at constant pressure

Ratio of thermal capacities: g = cP / cv

(Specific heats ratio)

Internal

cv  =  u /  T |v= m cv 

cP  =  h /  T |P = m cP
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Calorific Eq. of State – Perfect Gas

k T = 1/3 m0 vrms
2

Reminder:
Assuming translational movement only (degrees of freedom f = 3) 

+ principle of equipartition of energy:

f k T/2 = 1/2 m0 vrms
2 = KE for one molecule

No. of molecules in 1 kg: NA / m

u = (NA k/m) (f/2)T = R (f /2) T

h =    u + Pv   = R (1 + f /2) T

cv =  u/ T|v=const = R (f /2)

cP =  h/ T|P=const = R (1+f /2)

In general,  if f  3: 

For a perfect gas, u is composed of KE only (no intermolecular forces)

Also:
g = cP/cv = (f+2) / f cP - cv = R

Du = cv DT; cv = R / (g – 1)
Dh = cP DT; cP = g R / (g – 1)
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Variation of Internal Energy 
with temperature (qualitative)

+ Dissociation 

+ Ionization + ...PE

Liquid gas

Temperature increases

KE

translation +rotation +vibration
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Gas, large variations of temperature 1

Mono atomic

(Argon, Neon, …) 

Diatomic

(O2, N2, …)

Poly atomic

(CO2, NH3, …)

Translation               f = 3                         f = 3      f = 3

To estimate thermal capacities of a perfect gas:

f   g = (f+2) / f  cv = R/(g-1)  cP= g cv

To 

estimate f:

+Rotation                   +0                            +2        +3

+Vibration                  +0                            +1        +n?

But f depends on temperature T and the nature of molecules

Temperature

Low

Medium 

High 

Movement
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Gas, large variations of temperature 2

If
➢ Gas 
➢ Very small density
➢ Large variation of T

Then:
Pv = RT 

cP, cv = f(T)
u, h = f(T) 

are 
not f (P)

cv =  u/ T| v = du / dT

cP =  h/ T|P = dh / dT = d(u+Pv)/dT = d(u+RT)/dT = cv + R

cP = f (T) at low pressure is given in tables, hence:

cv

T

Every degree of freedom

is activated at a given 

temperature.

Translational Energy

+ Rotational Energy

+ Vibration Energy

Typical variation of cv 
At low pressure:

~Tamb

Semi-ideal

gas

h =  cP dT; cv = cP – R;  u =  cv dT
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Calorific Eq. of state – Other phases

u = x ug + (1-x) uf
h = x hg + (1-x) hf

Latent heat :

hfg = hg - hf

  cP →  

For a mixture 

liquid-vapor:
For a solid or liquid:

cP = cv = c

For crystals 

at ambient temperature: 

c = 3 R / m
_
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Ideal Gas Mixtures

Very Low Density

Negligible Molecular Interactions

Each component acts as an independent ideal gas

total mass

xi = mi / mT

total number of moles

Hypothesis

Definitions mass of componant i

Mass Fraction mT = Si mi Si xi = 1

yi = ni / nT

number of moles of componant i

Molal Fraction nT = Si ni Si yi = 1
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Mixture Molecular Mass

xi = mi / mT  = ni mi / mT  = (ni/nT) mi / (mT/nT) = yi mi / mmix

yi = xi mmix / mi 

mmix = mT / nT = S mi / nT = S ni mi/ nT = S yi mi

One can define an « equivalent » molecular mass:

Conversion Rules:

mmix = mT / nT = mT / S ni = mT / (S mi / mi) = 1 / (S xi / mi)

Also:
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Amagat Model

Every component i  behaves as a separate perfect gas

Having the following state properties:

- P = Pmix,   T=Tmix 

- Vi is the ‘partial volume’ : Vi < Vmix 

Gaz

A

Gaz

B

Gaz

C
S Vi = Vmix

P Vi = ni R T       (*)

Summing for all components:

P S Vi = nT R T    (#)

Comparing with PV=nRT  gives

Dividing equation (*) by (#)

Vi / V = ni / nT = yi

Additional
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Dalton Model

Every component i behaves as a separate perfect gas 

Having the following state properties:

- V=Vmix, T=Tmix 

- Pi  is the ‘partial pressure’ : Pi < Pmix 

S Pi = Pmix

Pi V = ni R T       (*)

Summing for all components 

S Pi V = nT R T    (#)

Pi / P = ni / nT = yi

Molecule

of Gas A

Molecule

of Gas B

Molecule

of Gas C

PA PB PC

Comparing with PV=nRT

Dividing equation (*) by (#)

Pressure due to impact

Of molecules of gas A

Pressure due to

B and C molecules
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Energy properties of Ideal gas mixtures

𝑢𝑚𝑖𝑥 𝑇 = 
𝑖
𝑥𝑖 𝑢𝑖 𝑇 ℎ𝑚𝑖𝑥 𝑇 = 

𝑖
𝑥𝑖  ℎ𝑖 𝑇

𝑐𝑣𝑚𝑖𝑥 𝑇 = 
𝑖
𝑥𝑖  𝑐𝑣𝑖 𝑇 𝑐𝑃𝑚𝑖𝑥 𝑇 = 

𝑖
𝑥𝑖  𝑐𝑃𝑖 𝑇

ത𝑢𝑚𝑖𝑥 𝑇 = 
𝑖
𝑦𝑖 ത𝑢𝑖 𝑇 തℎ𝑚𝑖𝑥 𝑇 = 

𝑖
𝑦𝑖 തℎ𝑖 𝑇

𝑐𝑣𝑚𝑖𝑥 𝑇 = 
𝑖
𝑦𝑖 𝑐𝑣𝑖 𝑇 𝑐𝑃𝑚𝑖𝑥 𝑇 = 

𝑖
𝑦𝑖 𝑐𝑃𝑖 𝑇
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Special mixture: Air – Water vapor
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Psychrometry

Problem considered

A perfect mixture of perfect gases:

• Each component : Perfect Gas

• A small quantity of matter may change phase

  (Gas – Liquid  or Gas – Solid)

Simplified Model

• gaseous phase is homogeneous and composed of 2 perfect gases

• vapor is at low pressure

•Treated is a perfect gas, even when close to saturation

• Liquid and solid phases are void of dissolved gases
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State of vap. 

In mixtureT

v

Pvap_sat

Pvap

T – v Diagram for

Condensable material

Definitions

Absolute (Specific) Humidity

w  =  mvap / ma
• mvap mass of vapour

• ma mass of other gases

w = (Pvap V / Rvap T) / (Pa V / Ra T)  =  (mvap / ma) (Pvap / Pa)

(For air and water: 

w = 0.622 Pvap / Pair )

Relative Humidity

f  = Pvap / Pvap_sat 

( For air and water: f = w Pair / (0.622 Pvap_sat (T ))

Pvap_sat (T ) Saturation pressure

At mixture temperature

Max Quantity of vapor when: f = 100% 1
3

Dew 

point2

• Add vapor at T const. Until state 3 (f reaches 100%)

Starting from state 1, we can :

• Cool at const P until state 2 (f reaches 100%)

(beyond points 2 or 3: condensation)
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Adiabatic Saturation

f

1 2
Air entering

f < 1

Air leaving

f = 1

1st Law

T1 : Temperature of state 1 (dry bulb)

T2 : Temperature of state 2 (wet bulb)

ma ha1 + mv1 hv1 + mw hf2 = ma ha2 + mv2 hvsat2

mw = mv2 - mv1 

ha1 + w1 (hv1 - hf2) = ha2 + w2 hfg2

But

T wet bulb    T dry bulb

Evaporation 

of water
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Psychometric Chart

w

T

f = 1

f = Const < 1

(obtained by dividing 

Ordinates proportionally)

h Tot. = Const

 wet bulb = Const

Obtained from: f = 1 = w Pair / (0.622 Pvap_sat (T ))
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Air conditionning processes

1

2
2’

h =
(w2-w1)

(w2’- w1)

Humidification

Drying

Cooling – Heating

Cooling and Dehumidification

Dew point
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Application: humidification air conditioner

2-stage humidification air conditioner

a

b

c

d

e

a b

a c d

eheat

humidityhumidifier

humidifier
heat
exchanger

Conditioned room
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Application: desiccant air conditioner

Desiccant based air conditioner

a

b

c

d

e

a

b

a

c d e

De-humidifier humidifier

heat
exchanger

heat

humidity

Conditioned 
room

Desiccant

When desiccant becomes wet:

Drying using 
solar energy
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To retain of chapter 4. A

➢ Saturation lines indicate phase change is about to start or end. 

➢ Critical point: vapor and liquid are indistinguishable. Triple line 3 phases in equilibrium

➢ Dryness fraction (quality) x is percentage of evaporation

➢ During phase change (evaporation, fusion, …) P = const  T = Const. 

➢ Latent Heat: heat for complete phase change @ P = const.

Phase change

Ideal (perfect) gas

➢ ANY gas at very low density is an ideal (perfect) gas

➢ Thermal equation of state: Pv = RT

➢ R = gas constant = R / m; R = 8314.5 J/kmol K,  m is the molecular mass
– –

Calorific equations of state

➢ For ideal gases small DT: Du=cvDT; Dh=cPDT; cp & cv constants; cP – cv= R; cP/cv=g
➢ For ideal gases large DT: Du=cvdT; Dh=cPdT; cp & cv =f(T); cP – cv= R; (semi-ideal)

➢ For real gases (non-ideal): u, h = f(T, P)
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To retain of chapter 4. B

➢ If all gases in the mix are low density: each gas i is ideal, Vi=Vmix, Ti=Tmix, Pi=yiPmix

➢ yi=mole fraction, xi=mass fraction; mmix=yi mi / xi 

➢ umix = Si xi ui; hmix = Si xi hi; same for cv, cP

Ideal gas mixtures

➢ Absolute humidity w=mvap/mdry_air; relative humidity f=Pvap/Pvap_sat(T)

➢ Adding water: w , T , f : maximum when f=100%  T=wet bulb temperature

➢ Cooling: w=const, T , f : maximum when f=100%  T=dew point

Psychrometry

Real gases

➢ ANY gas at HIGH density is NOT ideal, it is called a REAL gas: Pv  RT

➢ Many different equations of state, all depend on reduced properties PR=P/PC , TR=T/TC

➢ Use Van Der Waals, Compressibility charts, …



Geothermal Energy Capacity Building in Egypt (GEB)

Thermal  Engineering   for  Geothermal 
Energy

5
 
–

 
Applications of First Law
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Control Mass Processes

If the only energies involved are:

Isochoric process
(v = Constant)

1

2

v

P

w = 0

q = D u

1 2

v

P

Isobaric Process

(P = Constant)

w = – P D v

q = P D v + D u (= D h ??)

Heat q, internal energy u 

& work of changing volume w =–  P dv

q + w = D u
Isothermal process

(T = Constant)

If u=f(T) : q + w = 0 

If perfect gas: Pv = RT1 = Const. 

1

2

v

P

1RT
w d= −

2

1

v

v
v

v
w Pd= −

2

1

v

v
v

1 lnw RT
 

= −  
 

2

1

v

v
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Adiabatic process

Adiabatic process (q = 0)

w = u2 - u1 

- P dv = du

Dividing by  P v = R T:

- dv /v =  (cv /R) dT / T

By Integration

(moderate variation of T

Hence cv is constant): 

T2 / T1 = (v1 / v2)(R/cv)

If the only energies involved are:
Internal energy u 

&work of changing volume w =–   P dv

If in addition perfect gas: (no friction)

T2 / T1 = (P2 / P1)(g-1)/g 

But for a perfect gas : cP - cv = R;  g = cP / cv 

P1 v1
g = P2 v2

g 

This is NOT a state equation!

This is a process relation, 

i.e. relation between states 1 and 2

R / cv = g -1
T2 / T1 = (v1 / v2)(g-1)

By substituting v = R T/P

Comparing 1 et 2

1

2

Pvg = const.

- P dv = cv dT

ln(T2 / T1) = (R/cv) ln(v1 / v2)
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Polytropic process

1P
w d= −

2

1

n
v

1

nv

v
v

v
w Pd= −

2

1

v

v
v

1 1 1

1

P
w

n

 
= − 

−  

n

1

n-1 n-1

2 1

v

v v

P

v

n = 0

n = 1

n = gn = 

P v n = Const

Isobaric:        n = 0

Isothermal:    n = 1

Adiabatic: n = g

Isochoric: n = 

|Slope adiabatic| > |Slope Isothermal|

N.B.: 

1- This is a process NOT an equation of state!

2- This is NOT the most general process

Special cases

( )2 1

1

P P
w

n

−
=

−

2 1v v

If perfect gas, then:

( )2 1

1

R T T
w

n

−
=

−

n1
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Steady State Steady Flow (SSSF)
Case I: Flow in ducts: Q = W = 0

Adiabatic Flow (q=w=0)

A - Liquid B - Gas

D u + D (Pv ) + D KE + D PE  = 0

Negligible Friction : T  const  D u  0

but v = 1 / r  = const

D P / r + D v2 / 2 + D g z  = 0

Bernoulli !

If friction losses were not

negligible: D u > 0

D h + D v2 / 2 = 0

(D PE  0)

Conditions for SSSF:
➢ d/dt (state variables) = 0

➢ S min = S mout 
. .

D P / r + D v2 / 2 + D g z  = -D u

. .

Valid with or without friction

Work needed 

to lift a gas

  0

D h + D KE + D PE  = 0

m = r vA
.

air
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Case I (continued):Throttling

Usually: w , q, D KE , D PE  0

h2 = h1

For a perfect gas [N.B.: P2 < P1 but h = f(T)]

For a real gas

(NB: For a gas, if DP was high: 

D r will also be high, Hence: D v, D KE  0)

h2 = h1  T2 = T1

h = f(T,P) Hence for constant h , T varies with P

(An obstacle)

Joule-Thomson 

coefficients:

For an ideal gas:

m = mT = 0

Adiabatic throttling:

 m = (T/P)|h

Throttling at const. T: 

mT= (h/P)|T
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SSSF: Case II: Heat exchangers: Q ≠ 0; W = 0

Usually, we neglect:

•  Pumping and/or mixing work,

•   KE & PE,

•   Heat lost to surroundings

Compared to heat exchanged

mA hAin mA hAout

mB hBout mB hBin

System C

System A

System B

Q

System A: QA = mA (hAout - hAin)

System B: QB = mB (hBout - hBin)

System C: mA (hAout - hAin) = - mB (hBout - hBin)

QA = -  QB
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SSSF: Case III: Fluid machines: W  0

Work < 0 Work > 0

Liquid Gas

Pump
Fan

Compressor

Usually we neglect:

•   Heat 

•   KE + PE

wrt work

q + w = h2 - h1

w = h2 - h1 + D KE

BlowerTurbine

Fluid 

entering 

at high 

pressure

Fluid 

leaving 

at low 

pressure

Classification according to DP

P2  P1 P2 > P1 P2 >> P1

W / m = w = h2 – h1

. .

Except for: 

•  Cooled Compressor

•  KE for a fan
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Non-Steady Flow: Filling a tank

High pressure line High pressure line

Before filling After filling

Rigid tank

Valve

Iff rigid tank: V is const., W = 0

Energy balance: Q – 0 + min(hline + ½ v2)  – 0 = (m u)|after – (m u)|before

Mass balance: min= mafter – mbefore

Rigid tank: (m v)|after = V = (m v)|before

+ model: thermal eq. of state + calorific eq. of state

 Solve the problem!

Additional
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The 7 Golden questions

To “understand” any problem,  ask “The 7 Golden questions”

Group 1

System(s)?

Conservation(s)?

Energies?

One or more …

Mass, momentum, 

charge, energy

Heat, Work, h, u, KE …

Group 2

Initial, final state(s)?

Process(es)?

Model(s)?

Given one or more property?

Constant T, P, v …

Ideal gas? Semi? Real?

Extensive properties given?

None? Only one? More than one?
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Example 1: Mixing gases

1 kg N2

3 bar

20oC

3 kg H2

3 bar

50oC

1 kg N2

3 bar

20oC

3 kg H2

3 bar

50oC

Mixture: N2 + H2

?? bar

??oC

Sys A
Sys B

Sys mix

Before After

Rigid 

insulated 

tank

System(s): A, B & Mix (closed)

Conservation(s): mass & Energy

Energies: Internal energies

States: A, B complete; mix ?

Process(es): ??

Model(s): Ideal gas

VA + VB = Vmix

PV=mRT; R=R/m 

U=mcvT

mA + mB = mmix UA + UB = Umix

PAVA = mARATA  VA = ✓

PBVB = mBRBTB  VB = ✓

Vmix = VA + VB = ✓

Umix=mmixcvmixTmix 

       Tmix ✓
UA = mAcvATA = ✓

UB = mBcvBTB = ✓

Umix = UA + UB = ✓

xA = mA / mmix= ✓; xB, Rmix, cvmix ✓ 

PmixVmix=mmixRmixTmix 

       Pmix ✓

Extensive: mA, mB
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Example 2: The gun
30

9

180

Gases ~ Air
P1 = 100 bar

T1 = 927oC

Ambient Air:

Patm = 1 bar
v1= 0; v2=?? m/s

System(s):  (closed)

    Gases (~Air), Bullet, Ambient Air

Conservation(s): Energy

Energies: 

  Gas: Internal & Work (Wgas)

  Bullet: Work (Wbullet) & kinetic energy

  Ambient air: Wamb

States: 

   Gases: initial: P1, T1 , V1  complete

                Final: V2 ✓ 

Process: Gases: adiabatic

Model(s): Ideal gas

Extensive: Vgas1, Vgas2, mB

Dims in mms

( )1 1 2P P V V P
g

=  =

( ) ( )
2

1
2 2 1 1 1

V

gas
V

W PdV PV PV g= − = − − =

( )( ) ( )2

2 2: ; 120 ; 70 2bullet gas amb bulletB sullet Q W KE W m mW W+ = D + = − − = −  =v v

Bullet mass = 30 g

.PV Constg =

( )2 1: amb atmAmbient W P V V= − =
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To retain of chapter 5

Closed systems If: only (heat & work of changing volume) & ideal gases:

Isochoric (V=C, PT, w=0), Isobaric (P=C, VT, w=–PDv), Isothermal (T=C, P 1/v, w=–RT ln(v2/v1) 

Adiabatic (q=0, if no friction: Pvg=C), Polytropic (Pvn=C, if n1: w=R(T2 – T1)/(n – 1) ; … 

Open systems + Steady flow

Open systems + Un-Steady flow

Important special cases:

Methodology: the 7 questions:

(System? Conservation? Energies?); (States? Process? Model?); Extensive?

Flow in ducts: usually q=w=0  Liquid: Gases:

Heat exchangers: usually q0, w=0  for each side: q=Dh

Fluid machines: usually q=0, w0  w=Dh (may by + Dv2/2 or – q). 

DP/r +Dv2/2+D g z = -D u Dh+Dv2/2=0

Throttling: Dh=0

d(.)/dt0, min mout  consider the full First Law

Turbine, pump, 

compressor, blower, fan 
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Definition

State 1 State 2

System

Neighborhood

Process A

Process B = A-1 ?

Process A is said to be Reversible if there exists 

another process B allowing 

System  AND Neighborhood to restore their initial states

Non equilibrium process,

Dissipation
Irreversible Process
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Sources of irreversibility – 1
A - Friction, viscosity

Potential

Energy

PE

Kinetic Energy KE

+ Heat (air friction)

Kinetic Energy KE

of waves

Heat (viscous

friction of water)

WORK

To come back 

To the initial state

Final Balance :

System: restored initial state

Environment: 

   -  Gained heat, 

   -  Lost work Irreversible
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Sources of irreversibility – 2

Process 1 2 1:

System: 

    DU = 0  ok

Neighborhood:

   W21  > 0

  Q12+Q21 > 0

IRREVERSIBLE

B – Heat Transfer

State 1

Ice

State 1

Put in a refrigerator

State 2

Water

Left to ambient air

Q12 Q21

W21

C –Mixing

Coffee

Sucre

IRREVERSIBLE
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Sources of irreversibility – 3

D – Free Expansion

State 1 State 2

Gas Void

Gas
Void

State 1

W21

Q21

U2 = U1  ;  (Q12=W21=0)

Process 1 2 1:

System: 

    DU = 0  ok

Neighborhood:

    Q21 > 0

    W21 > 0

IRREVERSIBLE

Gas
Void

To restore

Initial state
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Definitions

A Heat reservoir is a body of high 

thermal capacity, allowing it to 

exchange heat 

without changing its temperature

T = Const

Q

A Heat engine is a device working on a 

Cycle to exchange Heat  Work

Image:

Water taken from or given to sea 

Does not change its level!



Thermodynamics for Geothermal Energy 7/16

1- Motor

Evaporator

Condenser

Heat Reservoir

at Tc (Cold)

Heat Reservoir

at Th (Hot)

Qh

Qc

Pump

Wp

Turbine

Wt

|Work| = |V dP |

(Vgas >> V liq)

|Wt| >> |Wp|

W = |Wt| - |Wp| > 0

• Qc cannot be reused in the cycle 

 (Tc < Th)

• Qh has not been entirely transformed into work

We define Efficiency: 
h = |W| / |Qh| < 1

Liquid

vapor

High P

Low P

Steam Power Plant

Qh

Qc

W

|Qh| -  |Qc| = W

    (1st Law)
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2- Refrigerator, Heat Pump

Qh

Qc

Compressor

WThrottling Coefficient of performance COP

Refrigerator

COPrefrig = |Qc| / |W|

Heat Pump

COPhp = |Qh| / |W| > 1

NB: |Qh| = |W| + |Qc|

High P

Low P

liquid
vapor

Condenser   

Evaporator

Heat Reservoir

at Th (Hot)

Heat Reservoir

at Tc (Cold)

Qh

Qc

W
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Second Law Statements

• Works in a cycle

• Produces work

• Exchanges heat with only one 
reservoir

A- General All real processes are irreversible

B - Clausius Heat CANNOT be spontaneously transferred

From a cold body to a hotter body

C - Kelvin - Plank It is impossible to construct an engine that:

All together
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Hot reservoir at Th

Equivalence of statements 1

A hypothetic

Motor that

violates

Kelvin-Plank

statement

W=Qh

Qh

Heat Qc has been transferred

from Tc to Th 

Without external intervention!

(which violates Clausius statement)

Suppose that we can violate Kelvin-Plank stat. We would violate Clausius stat.!

Proof:

Energy balance:

Hypothetic motor violating K-P: 

receives |Qh|,  gives |W| = |Qh|

Cold Reservoir at Tc

Qc

If we add a Refrigerator

  Receiving |Qc| ,  |W| =|Qh|, 

  Giving       |Q| = |Qc| + |W|

Qc

Q=Qc+Qh

Refrigerator

Qh

The heat Qh
can compensate

that consumed 

By the motor
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Carnot Cycle

➢ Process 1-2 Isothermal

▪ T = Th

▪ |Heat added| = Qh

P

V

1

2

3
4

Qh

Qc

T = Th

T = Tc

adiabatic
adiabatic

Net Work |W | = |Qh | - | Qc |

Reversible Cycle

➢ Process 2-3 Adiabatic

▪ Heat  = 0

➢ Process 3-4 Isothermal

▪ T = Tc

▪ |Heat rejected| = Qc

➢ Process 4-1 Adiabatic

▪ Heat = 0
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Carnot Cycle for a perfect gas

For a perfect gas:

PV = m R T;  dU = mcv dT

Process 1 - 2:

|Qh| = |W12| = mR Th ln (V2/V1)

Process 3 - 4:

|Qc| = |W34| = mR Tc ln (V3/V4)

h = 1 – (Tc /Th ) [ln (V3/V4) / ln (V2/V1)]

For adiabatic processes:

V3 / V4  = V2 / V1
h = 1 - Tc /Th

P

V

1

2

3
4

Qh

Qc

T = Th

T = Tc

adiabatic
adiabatic

T2 / T3 = (V3 / V2)(g-1) =T1 / T4 = (V4 / V1)
(g-1)

|Qc| / |Qh| = Tc / Th
|Qc| / Tc = |Qh| / Th

h = (|Qh| – |Qc|) /|Qh| = 1 – |Qc| /|Qh|
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Carnot Principles - 1

It is impossible to construct a motor operting between 2 reservoirs

having an efficiency that is better than a reversible motor 

operating between the same reservoirs

1 - "Carnot" is the best!

Qc'
Tc

Th

Another 

Motor claiming 

a better h 

than Carnot !

A reversible

motor

{ex: Carnot}

Qc

Qh'
W

Qh

Suppose h' > h :

{
Let us invert the

reversible motor

{ex: Carnot}:

Heat Pump

By joining the 2 machines:

|W/Qh'| > |W/Qh| 

|Qh' | <    |Qh | 

|Qc' | <   |Qc | 

|Qc | - |Qc' |

|Qc | - |Qc' |

|Qc | - |Qc' | goes from cold to hot

Spontaneously: Impossible!
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Carnot Principles - 2

All other "Carnots" are as good !

All reversible motors working between the

same heat reservoirs have the same efficiency

Proof:

• Put them in parallel,

• Reverse one of them

• Use the preceding principle

The efficiency of a reversible motor, 

working between 2 heat reservoirs

depends only on Th andTc
(i.e. not function of the nature matter nor the cycle used)

h reversible = f( Tc , Th )  system matter

Base for a thermodynamic temperature scale

Th

Qc

W

Qh

Tc

Qc'

W

Qh'
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Performance of heat engines

By definition, whether the machine was reversible or not:

COPref=Qc/W=Qc/(Qh-Qc)

For a motor For a refrigerator For a heat pump

For a reversible machine, Qh/Th=Qc/Tc, hence: 

COPhp=Qh/W=Qh/(Qh-Qc)   >1h=W/Qh=1- Qc/Qh  < 1

COPref reversible=Tc/(Th-Tc) COPhp reversible=Th/(Th-Tc)   >1h reversible=1- Tc/Th < 1

Absolute value of heat exchanged with the hot reservoir: Qh
Absolute value of heat exchanged with the cold reservoir: Qc

Absolute value of work: W = Qh - Qc

The performance of a reversible machine is always the best possible

hreversible  hirrev COPref reversible  COPref irrev COPhp reversible  COPhp irrev

Notation:
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To retain of chapter 6

Irreversible if: Friction, viscosity, Heat transfer, Mixing, Free expansion

Reversible= System AND surroundings can restore initial state

Heat engine: A cycle to exchange Work  Heat

Refrigerator: COPref = |Qc| / |W|

Motor: Efficiency h = |W| / |Qh| < 1

Heat pump:   COPhp = |Qh| / |W| > 1

Clausius: Heat from hot to cold only

Kelvin – Plank: No 100% efficiency engine

Second Law Statements (all are equivalent)

General: All irreversible

Carnot cycle: Reversible 4-processes (2 isotherm+2 adiabatic)

|Qh| / Th = |Qc| / Tc

➢ Reversible performance  Irreversible performance (all Engines)

|Qh|=Heat exchanged with hot reservoir

|Qc|=Heat exchanged with cold reservoir

|work|=|Qh|–|Qc|

➢ Reversible Motor:                 h = |Qh| – |Qc|) / |Qh|   = 1 – Tc/Th < 1

➢ Reversible Refrigerator:  COP= |Qc| / (|Qh| – |Qc|)   = Tc / (Th – Tc)

➢ Reversible Heat pump :  COP = |Qh| / (|Qh| – |Qc|)   = Th / (Th – Tc) > 1
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7 – Entropy
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Introduction from physics: Clausius Inequality

hCarnot  = 1 - Tc / Th = 1 - |Qc / Qh|

|Qh / Th| =  |Qc / Tc|

Respecting signes:  (Qh / Th + Qc / Tc)|rev = 0

For an irreversible cycle:

For a reversible Carnot cycle:

For the same |Qh| :    |Qc| will be greater

(Qh / Th + Qc / Tc)|irrev < 0
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Same area

An equivalent process

A general process: ab

Process ax – xy – yb 

ax: Adiabatic

a

b
x

y

P

V

o

Q=0
Q=0

T=Const

One can replace:

By an “equivalent”

DUab  =  DUaxyb

Qab =  Qaxyb

Wab =   Waxyb

Since area of axo = area of oyb:

But:

Process ab is equivalent to process axyb

yb: Adiabatic

xy: Isothermal such as same area
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Clausius Inequality for any cycle

P

v

Adiabatic

Heat added

isothermal

Original 

Cycle 

Heat 

Rejected

isothermal

Original Cycle n cycles of Carnot

A frequent but illegal formulation :  d Q / T  0

cycle (Q / T) dt  0
·

Clausius inequality

For the n cycles of Carnot:

S Qi / Ti    0

\ For the original cycle

Equality applies 

for reversible cases 

ONLY

Transform into:

–
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rev A

rev C

rev B

irrev D

Entropy starting from Clausius

1

2

Does NOT depend on the process

As long as it is reversible

P

V

 −rev
dtTQ

12


Define:  −
=−=D

rev
dtTQSSS

121212


Cycle 1A2C1:

Cycle 1B2C1:

Cycle 1D2C1:

Applying Clausius Inequality:

 −revA
dtTQ

12


 −revB
dtTQ

12


 −revC
dtTQ

21


 −irrevD
dtTQ

12


 −revC
dtTQ

21


 −revC
dtTQ

21


+

+

+

= 0    (1)

= 0    (2)

 0    (3)

Equation (1) – (2):

 −irrev
dtTQ

12
 −rev

dtTQ
12



Equation (1) – (3):

–  0 

In General:

irrevSdtTQS D+=D 1212


DSirrev  0
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How entropy changes?

irrevSdtTQS D+=D 1212
 DSirrev  0

Add heat

Body KE
Body U

(KE of 

molecules)

Body U (KE of molecules)

First Partial understanding:

Increasing Chaos increases Entropy

DS > 0: Adding heat or irreversible process DS < 0: Rejecting heat 

Initial Body KE

When sliding over a rough surface
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Departure from reversible

Reversible expansion work: |Wrev12|

Reversible process: Qrev12 + Wrev12 = U2 – U1

( ) irrevSdtTQSS D+=− 1212


where DSirrev  0

|W12|  |Wrev12|

IRReversible expansion work: |W12|

Reversible compression work: Wrev12

IRReversible compression work: W12

|W12|  |Wrev12|

W12  Wrev12

IRReversible process: Q12 + W12   = U2 – U1

Subtracting: Qrev12 - Q12 + Wrev12 - W12 = 0

( ) ( )
12 12

irrev
rev

Q T dt Q T dt S− = D 

“Friction” work: W12 – Wrev12
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Gibbs equation

( ) irrevSdtTQSS D+=− 1212


T dS = dU + P dV Gibbs Equation:

Consider a ‘short’ process during time dt

If reversible:  

If irreversible: 

Heat 

revQ dt TdS=

irrevQ dt TdS TdS= −

Work 

revW dt PdV= −

irrevW dt PdV TdS= − +

+ Internal E 

dU

2nd Law 1st Law 

T dS = dH – V dP 

Equivalent to:
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Entropy of different phases

Ideal Gas:

Semi-Ideal 

Gas


−

=
+

=−
2

1

2

112
T

dPdh

T

Pddu
ss

vv

( ) ( ) 







−−=








−=− 

1

2
1

0
2

0

1

2
12 lnln

2

1 P

P
RTsTs

P

P
R

T

dTc
ss

T

T

P

( ) ( ) ( ) ( )1212121212 lnlnlnln PPRTTcRTTcss Pv −=+=− vv

( )0 Pc dT
s T

T
= 

2 2

2 1
1 1

pv
c dTc dT Rd RdP

s s
T v T P

  
− = + = −  

   
 

v

If isentropic:

If isentropic:
( )

( )

( )

( )
2 22 2

2 1

1 1 1 1

0 ;
r r

r r

P T V TP V
s s

P P T V V T
− =  = =

( ) ( )2 1 2 1 2 1 2 1 1 20 ;P vc R c R
s s P P T T V V T T− =  = =

where: ( ) ( )( ) ( ) ( )( )0 0exp ; expr rP T s T R V T T s T R= = −

( )1  −

( )1 1 −
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Other cases

Wet Vapor:

Solids, liquids: cp @ cv @ Constant c ;  v @ constant

( ) gf sxsxs +−= 1

( )1212 ln TTcss =−

Gas mixtures

A B

A BS S SD = D + D

ln ln
after after

A A P

before before A

T P
S m c R

T P

 
D = − 

  

ln ln
after after

B B P

before before B

T P
S m c R

T P

 
D = − 

  

Partial

pressure
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T- s, h - s  Charts

q + 

Tdsirrev s

T

T ds = q dt  + T ds irrev
• 

For an ideal gas:

For v = constant:

For P = constant:

P =const

v =const

T =const

s =const

s

T or h

( )1212 ln TTcss P=−

( )2 1

2 1
Ps s c

T T e
−

 =

( )1212 ln TTcss v=−

( )2 1

2 1
vs s c

T T e
−

 =

( ) ( )

( ) ( )1212

121212

lnln

lnln

PPRTTc

RTTcss

P

v

−=

+=− vv

Add  heatReject heat

w + 

wf v

P
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T - s, h - s  charts    (next)

P1

P2

v1

s

T
C.P.

 h / s |P const = T

NB:

Region of wet vapor

s

h

P1

P2

C.P.

v1

T1

T ds = dh – v dP 
P = cont  T = const



Thermodynamics for Geothermal Energy 13/23

Entropy of a control volume

Control

Mass

Control

Volume

min sin

mout sout

Before After

T

q•dA

T

q•dA

(mcvscv) before (mcvscv) after

For the control mass But: S1 = min   sin + (mcvscv) before

S2 = mout sout + (mcvscv) after

For the control volume

q• =W/m2

2 1 irrev
A

qdA
S S S dt S

T

 
D = − = + D 

 
 

( ) irrevAininoutoutcvcv Sdt
T

dAq
smsmsm D+








=−+D  



( ) dtdS
T

dAq
smsmdtsmd irrevAininoutoutcvcv +=−+ 




Safter – Sbefore

Additional
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Open steady state steady flow system

dSuniverse /dt = 

    dSsystem /dt + dSfluid /dt + dSreservoir /dt

dSsystem/dt = 0 (steady)

( )fluid out indS dt m s s= −

reservoir i ii
dS dt Q T= 

in out

Steady Open Systemm m

T1

Q1

T2

Q2

. .

Additional
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Isentropic efficiency

s

h

a

b'
b

c

d'
d

'ba

ba
is

hh

hh

−

−
=hcd

c'd
is

hh

hh

−

−
=h

Adiabatic 

expansion

Adiabatic

compression
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Statistical introduction: Micro & Macro states

Distribution assuming

indistinguishable objects
Distribution assuming

distinguishable objects

Different Positions,

Different energy levels

…

Macro - state Micro - states

a
b

c

d

b
a

c

d

..

..

..

..

1 3

➢The distribution of molecules is totally random

➢All micro-states are equally probable

Major Assumptions:

a

b

c

d

a

c

b

d

..

..

..

..

2 2
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Thermodynamic probability W

The thermodynamic probability W of a macro state

= Number of corresponding micro states

Box 1

N1

Box 2

N2

Box J

NJ
…  =

=
J

j jNN
1

Number of arrangements of N distinguishable molecules : N!

Number of arrangements of Nj distinguishable molecules in box j: Nj!

!N!!NN

N!
W

J21

=

A given

Macro state

To get corresponding Micro state:
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Distribution between 2 boxes

NA NB

Macro state

NA  -  NB

0  -  4

1  -  3

3  -  1

4  -  0

2  -  2

Micro states W

1

4

4

1

6

For large N use

Sterling formula:

ln N!  N ln N - N

( ) ( ) BA N

B

N

A NNNNW .

1,2,3,4

2,3,41 1,3,42 1,2,43 1,2,34 

1,2 3,4 1,3 2,4 1,4 2,3 1,23,4 2,4 1,3 2,3 1,4

2,3,4 1 1,3,4 2 1,2,4 3 1,2,3 4 

1,2,3,4

!!NN

N!
W

BA

=

1

10

100

1,000

10,000

100,000

0.25 0.5 0.75

W

N = 4 N = 8 N = 16

NA / N
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Entropy starting from statistics

➢The distribution of molecules is totally random

➢All micro-states are equally probable

➢The macro-state of W max is the most probable 

➢An isolated system tends spontaneously towards the state of W max

An isolated system spontaneously tends towards W max

S = f (W)

Another formulation of Second Law (direction of a process):
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Relation between entropy S and probability W

System A System B

System C

SA , WA SB , WB

WC = WA . WBSC = SA + SB

S = f (W)?

f(WA WB) = f (WA) + f (WB)

WB f '(WA WB) = f '(WA)

WAWB f ''(WA WB) + f '(WAWB) = 0

W f''(W) + f'(W) = 0

S = f (W) = C1 ln (W) + C2 S = C1 ln (W)

Put: S = 0 for W=1

  /WA

  /WB

SC      =    SA    +    SB
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Obtaining the coefficient

( ) ( )  12 1 2 1 1ln ln 2 ln 2AS C W W C ND = −   

gas void gas void

Q

W

State 1

State 2

Irreversible

Process

Reversible

Process

Quantity of gas = 2 mol 

= 2 NA molecules

irrevSS D=D 12
( )

( )12 _ 2 1

12
12 _

2 ln
2 ln 2

rev

rev

Q RT V VQ
S dt R

T T T
D = = = =

W1=1

( )
!!NN

!N
W

AA

A2
2 =

C1=   /NA = k

S=k ln W

Q = W

R
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To retain of chapter 7

0
cycle

Q
dt

T


d
0; 0

cycle cycle

Q Q

T T


  

Clausius inequality for 

any general cycle: 

irrevSdtTQS D+=D 1212


DSirrev  0

DS > 0: Adding heat or irreversible process DS < 0: Rejecting heat 

Entropy for a general process: 

Gibbs Equation T dS = dU + P dV T dS = dH – V dP 

DS for ideal gas: ( ) ( ) ( ) ( )1212121212 lnlnlnln PPRTTcRTTcss Pv −=+=− vv

Entropy S = k ln(W) 

For an OPEN system: Added terms:

( ) dtdS
T

dAq
smsmdtsmd irrevAininoutoutcvcv +=−+ 




s

h

a

b
b'

s

h

c

d
d'

'ba

ba
is

hh

hh

−

−
=h

cd

c'd
is

hh

hh

−

−
=h

Entropy is related to thermodynamic probability
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Carnot cycle
Process 1-2:

Isentropic
Heat |Q12|=0

Process 2-3:

Isothermal heating (T=Th)
Added heat |Qh|=Th (s3-s2)

Process 3-4:

Isentropic
Heat |Q34|=0

Process 4-1:

Isothermal cooling (T=Tc)
Chaleur rejetée |Qc|=Tc (s4-s1)

h Carnot = 1 – |Qc/Qh| = 1 – Tc/Th 

1

2 3

4

T

s

Th

Tc

Qh

Qc

Additional
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Stirling cycle
Process 1-2:

Isochoric heating
Regenerated heat |Q12|=u2-u1

Process 2-3:

Isothermal heating (T=Th)
Added heat |Qh|=Th (s3-s2)

Process 3-4:

Isochoric cooling
Regenerated heat |Q34|=u3-u4=|Q12|

Process 4-1:

Isothermal cooling (T=Tc)
Chaleur rejetée |Qc|=Tc (s4-s1)

h Sterling = 1 – |Qc/Qh| = 1 – Tc/Th 
                 = h Carnot 

NB s4-s1= R ln (v4/v1) = R ln (v3/v2) = s3 – s2

1

2 3

4

T

s

T

h

Tc

Qh

Qc

Additional
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Ericsson cycle

1

2 3
T

s

T
h

Tc

Qh

Qc

Process 1-2:

Isobaric heating
Regenerated heat |Q12|=h2-h1

Process 2-3:

Isothermal heating (T=Th)
Added heat |Qh|=Th (s3-s2)

Process 3-4:

Isobaric cooling
Regenerated heat |Q34|=h3-h4=|Q12|

Process 4-1:

Isothermal cooling (T=Tc)
Rejected heat |Qc|=Tc (s4-s1)

h Ericsson = 1 – |Qc/Qh| = 1 – Tc/Th

= h Carnot 

NB s4-s1= -R ln (P4/P1) = -R ln (P3/P2) = s3 – s2

4

Additional
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2

Rankine cycle

To imitate Carnot, we need an isothermal heating: very difficult??

Isobaric heating: Easy !

How about the isobaric heating

of a Liquid – vapor mixture T

s

P1

P2

1'

2' 3'

4'1

3

4

Problem for the compression

of a Liquid – vapor mixture

Problem for the expansion

of a Liquid – vapor mixture

Rankine cycle: 1-2-3-4
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Cycle Parameters 

P2

2

T

s

P1

1

3

4
s

h

1

2
P1

P2

3

4

T3

T3

Principle parameters of the cycle:

P1 : Condenser pressure

P2 : Boiler pressure

T3 : Temperature at exit of boiler

3

4

1

2

Boiler
turbine

pump

condenser

h = (h3-h4)/(h3-h2)
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Effect of boiler exit temperature T3

By increasing T3:

•  h   increases ☺

•  x4  increases ☺

Upper limit of T3: 

Dictated by:

• Turbine cooling

• Metallurgical considerations

P2

2

T

s

P1

1

3'

4'

T3' 3
T3

Increase of :
Qh Qc W

Average Th increases

4
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Effect of boiler pressure P2

Increase of P2:

•  h   increases ☺

•  x4  decreases 

P2

2

T

s

P1

1

3

4'

T3
3'

2'

P2'

4

Adding heat at ~ constant Th
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Effect of condenser pressure

Same added heat

Less rejected geat

Decreasing P1:

•  h   increases ☺

•  x4  decreases 

P2

2

T

s

P1

1

3

4'

T3
3'

2'
P1'

4

1'

Rejected heat

Before After
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Reheat cycle

Reheating at Pi:

•  h   increases ☺

•  x4  increases ☺

By reheating at Pi:

T increases

3

4

1

2

Boiler
turbine

pump

condenser

x

y

Pi

2

T

s

P1

1

y
x

T3
3

P2

4
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Regenerative cycle I

1

2

3

4

x

P2

2

T

s

P1

1

3

4

T3

By reheating feed water by the vapor in turbine:

T increases

Approaches Sterling/Ericson

Regenerated heat

Regeneration I:

•  h   increases ☺

•  x4  decreases 

x
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Regenerative cycle II

Not practical Feasible

Feed water is heated by:

Part of the energy of

All the vapor
All  the energy of 

Part of the vapor

1

2

3

4

x

1

2

3

4

x

Regeneration II:

•  h   increases ☺

•  x4  constant 

y

z
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Organic Rankine cycle

P2

2

T

s

P1

1

3

4

T3

Tg

Geothermal heat sources are at 

low temperatures Tg ~ 100oC – 250oC

By Sylvain.quoilin at English Wikipedia - Transferred from en.wikipedia to Commons by 

pashute., Public Domain, https://commons.wikimedia.org/w/index.php?curid=14019848

Superheat not suitable: T3 ~ Tsat

Water not suitable: 

dryness x4 << 1

Use organic working

fluid (e.g. isopentane)

 and probably

regeneration
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Feed water heaters

Open feed water heate

Closed feed water heater

Vapor

Water

VaporVapor Vapor

Water
Water

Additional
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Deviations of real cycle

• Loss of pressure in boiler

• Loss of pressure in condenser

• Isentropic efficiency of turbine

• …

Additional
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Heat is added by

combustion of working fluid

(air – fuel mixture)

E.g. Gas Turbine :
Combustion

Chamber

Simplified model

Internal combustion engines (ICE)

Ambient air Combustion

Gases

Fuel

Real plant

Qh

Qc

Pure Air! 

compressor

turbine
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Hypotheses

❑All processes are reversible

❑Fluid: Gas having a constant chemical composition

➢Heat is added by an external source

➢Closed Cycle: flue gases are cooled and reused

❑Perfect Gas

➢P v = R T

➢Constant thermal capacities
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Joule (Brayton) Cycle

1 4

2 3

1

2

3

4

T

s

Qh = cp (T3 - T2)

|Qc|= cp (T4 - T1)

h = 1 - |Qc| / Qh

= 1 - (T4 - T1) / (T3 - T2)

In the compressor: T2/T1 = (P2/P1)(g-1)/g

In the turbine:           T3/T4 = (P2/P1)(g-1)/g

T3/T4 = T2/T1 = (T3 - T2) / (T4 - T1)

h = 1 – T1 /T2 = 1 - 1/ (P2/P1)(g-1)/g

Qh

Qc

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60
P2/P1

h
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Regenerative Joule cycle

1

2

3

4

T

s

x

y

Fuel

1

4

2 3
x

y

Regenerator

Ideal

regeneration

   Tx  = T4

   Ty  = T2

Qh = cp (T3 - Tx) = cp (T3 - T4) = Wturb

|Qc|= cp (Ty - T1) = cp (T2 - T1) = |Wcomp|

h = 1 - (T2 - T1) / (T3 - T4)

T2 - T1 T1(T2/T1-1) T1 T3 T1 P2

T3 - T4 T4(T3/T4-1) T3 T4 T3 P1

= = =

g-1
g

But:

h = 1 - (T1/T3) (P2/P1)(g-1)/g
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Regenerative cycle
 with Multi stage reheat Joule 

Fuel

1

c
a

b

4

y

Regenerator

FuelQ 2 3x

d

T

s1

a

b

2

d3

4

y

x

c

Constant pressure ratio   Max h

N-Stages

s

T Almost 

Ericson

h  h Carnot

Additional



Thermodynamics for Geothermal Energy 21/33

Deviations of real cycle

• Variation of gas thermal capacity cp(T)

• Variable chemical composition (Combustion, Dissociation CO, NO, …)

• Efficacy of regenerator 

• Pressure drops (combustion chamber, regenerator, ..)

• Isentropic Efficiencies of turbine and compressor

hhtr = (hx' - h2)/(hx - h2)

1

2

3

4

T

s

x

y

x'

Additional
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Combustion engines

V

P

Po

Vc

Vs

A

F

C
E

D

B

Compression ratio

r  = (Vs + Vc) / Vc 

Spark

ignition

Compression

ignition

At intake: pure air

At end of compression:

     Fuel injection

     Ignition by contact of hot air

Additional
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Otto Cycle

V

P

Po

Vc

Vs

A

B

C

D

E

F

~

qh = cv (T3 - T2)

|qc| = cv (T4 - T1)

h =  1 - 1/r(g-1)

VsVc

Po

P

V
1

2

3

4

adiabatic

h = 1 -
(T4 - T1)

(T3 - T2)
= 1 -

T1(T4 / T1 - 1)

T2(T3 / T2 - 1)

r = V1 /V2

= V4 /V3

0.5

0.55

0.6

0.65

0.7

0.75

5 10 15 20 25r

h

Additional
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Diesel cycle

qh = cP (T3 - T2)

|qc| = cv (T4 - T1)

VsVc

Po

P

V
1

2 3

4

adiabatic

Definition:   rv = V3 / V2 

T4 /T3 = (V3 /V4)
(g-1) = (V2V3 /V4V2)

(g-1) = (rv/r)(g-1)

T3 /T2 = V3 /V2 = rv

T2 /T1 = (V2 /V1)
(g-1) = r(g-1)

h = 1 -
cv(T4 - T1)

cP(T3 - T2)

T4 /T1 = rv
g

h = 1 -
T1(T4 /T1 - 1)

g T2(T3b /T2 - 1)
h = 1 -

(rv
g - 1)

r(g-1)g (rv - 1)

Additional
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Otto  - Diesel

1

2

3 Otto

3 Diesel

4

T

s
V=V1

V=V2

P = P2

1

2 Diesel

3

4

T

s
V=V1

V=V3

P = P3

2 Otto

Same Compression ratio r

h Otto  >  h Diesel

Same T Max. & P Max. of cycle

h Diesel  >  h Otto

Additional
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Dual cycle

VsVc

Po

P

V
1

2

3a

4

adiabatic3b

Heat addition

- Isochore: 2 – 3a

- Isobar: 3a – 3b 

(Fast Diesel motors)

Additional
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Ignition system

         Spark    Compression

Fuel          Gasoline (light)   Diesel fuel (heavy)

Ideal cycle         Otto    Diesel or Combined

Compression ratio        6 - 10    12  -  25

Efficiency         30 - 35%       40  - 45%

Power/volume           30-50 kW/l       25-40 kW/l

Other                          fast response        longer life

Additional
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Refrigeration and heating cycles

Cold

Hot

Work

H
e
a
t

H
e
a
t

Refrigerators & Heat pumps have in common:
➢ They receive work

➢ To transfer heat from a cold space

➢ To heat a hot space

Same cycle may be used for cooling or heating

Refrigeration / Heating cycles include (see below):
➢ Vapor compression cycle

➢ Absorption cycle

➢ Reversed Joule cycle
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Vapor compression cycle

"Inverted" Rankine Cycle Refrigerating effect

Process 3-4: throttling (expansion work is negligeable)

State 1: starts at saturation or superheat 

            (to preserve the compressor)

Practical Modifications

1

2

3

4

Qh

Qc

W

s

T

1

2
3

4

P2

P1
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Refrigerants

• CFC (ChloroFluroCarbons)  gases are banned (Ozone pb)

• HFC (HydroFluroCarbons i.e. no chlore) are replacing

• Gases should have adequate triple and critical points for the 
application

• No R22, but rather R-410A, R-407C, R-134a
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Real Cycle

s

T

1'

2b
2'

3

2a

3'

4 4' 1

1'

2'

4'

3'

1

2

3

4

Qh

Qc

W

h

P

1
1'

2a
2b2'

3

3'

4

4'

Additional
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Absorption cycle

1

23

4

Qh

Qc

Condenser

Evaporator
Absorber

(vapor is absorbed

in the solution)

Regenerator

(vapor is freed

out of solution)

Heat 

exchanger

Strong 

Solution 
Weak

Solution 

W

Qb

Qa

Refrigerant Solvent

NH3      H2O

H2O   H2O+CaCl

Compressor is replaced by:

• vapor is absorbed in a liquid

• liquid mixture is pumped (low work)

• vapor is then freed out of liquid

Price paid for very small work:

Heat is added Qa 

At high temperature

Originally
There was a 

Compressor here
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Reversed Joule cycle

4

3

2

1

T

s

1

2 3

4

Intake of 

Ambient air
Outlet of

Cold air

Qh

1 4

2 3

x

y

Regenerator

Qh

Qc

4

3

2

1

T

s

x

y

To
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To retain of chapter 8 – A 

➢ Sterling and Ericson cycles can be viewed as 

regenerative Carnot cycle 

➢ Rankine cycle is the practical 

implementation of Carnot cycle 

➢ Rankine cycle can be improved by 

reheat and/or regeneration

➢ Joule (Brayton) cycle models gas 

power plants

➢ Joule cycle can be improved by 

reheat and/or regeneration

P2

2

T

s

P1

1

3

4

T3

1

2

3

4

T

s
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To retain of chapter 8 – B 

➢ Same cycle can be used either for cooling or heating purposes

➢ Refrigeration cycles are either:

➢ Vapor compression (inverted Rankine)

➢ Absorption cooling (vapor 

compression without compressor)

➢ Inverted Joule
s

T

1

2
3

4

P2

P1

4

3

2

1

T

s
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What is a fluid

Matter undergoing continuous deformation under shear stress
Can be a liquid (incompressible) or a gas (compressible)

Stress = External force applied on the surface per unit area
Pressure : Normal      component of stress
Shear      : Tangential component of stress

Fluid

Applied force FResistive force
 - F

y

Fixed wall

Moving wall 
velocity v

yvAF −=−=

Fluid can be at rest 
under pressure

: dynamic viscosity
n=/r kinematic visc.
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Flow description
v (x,t) Velocity at any point x and time t

Uniform flow: v is independent of x
Steady flow  : v is independent of t

Compressible flow: ‘appreciable’ changes of density

streamlines

A stream tube

P

H

P = rgH = gH

Incompressible flow: ‘No’ changes of density
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Conservation equations

 rr= AvdAm nnv

For any system: Sources + incoming – outgoing = accumulation

Mass balance 0 + min – mout = dms/dt
. .

Momentum F + minvin – moutvout = d(msvs)/dt
. .

( ) ( ) ( ) ssoutoutinin PEKEum
dt

d
PEKEhmPEKEhmWQ ++=++−++++ 

( )PEKEhwq ++=+
For a steady state flow (SSF):

d(.)/dt =0;  min = mout= m
. . . q  = Q / m

..
w  = W / m

..

For adiabatic flow of liquids: q=0 w=Ppump/r h=P/r + u

Ppump/r - u = P/r + v2/2 + gz

Losses due to friction

Bernoulli's eq.:

Energy

Pump power 
W= mPpump/r
W=gQHpump

..
.

Ppump/g - hl = P/g + v2/2g + z

Pressure head velocity headHead lost
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Internal flows

ink

Low velocity
Re = vD/n < ~2300

Laminar flow
ink

High velocity
Re = vD/n > ~2300

Turbulent flow

Reynolds Experiment

Developing zone 
L/D~20

Fully developed zone

Laminar

Turbulent
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Losses in fully developed

Plosses/r = f L/D v2/2
Moody chart

For minor losses
(elbows, valves, filters, …)

Plosses/r = k v2/2

k is the loss coefficient
obtained empirically.
(See tables)

L = Pipe length
D = hydraulic diameter
    = 4*Cross_Area/Perimeter
f = coefficient fn. of Re=vD/n
     and relative roughness K/D
For laminar flow: f = Po/Re
(Poiseuille no. Po = 64 for circular)
For turbulent flow: use chart

hloss = f L/D v2/2g

hlosse = k v2/2g
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External flow

Lift

Drag Lift = CL A r v2/2

Drag = CD A r v2/2

Additional



Thermodynamics for Geothermal Energy 8/13



Thermodynamics for Geothermal Energy 9/13

Classification of Fluid Machines

Positive 
Displacement

Turbo Machines

Work BY fluid Work ON fluid

Impulse
Turbine

Liquid Gas

Radial

Mixed

Axial

Compressor

Blower

Fan

Ink Jet

V~

In Fluid

Piezo quartz

5

Gear Pump

Reaction
Turbine

Pelton

Francis

Low P

High P
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Fundamentals of Turbo Machines

u1=wr1

u2=wr2

v1

v2

R1

R2

u : wheel velocity = w r  N D
v : absolute velocity
R : relative velocity

Tangential momentum: r Q . w

w1

w2
w : tangential component of v

Fluid Torque= r Q . (w1r1-w2r2)

Fluid Power = r Q . (w1r1-w2r2) w
                       = r Q   (P/r) (P/r = gH) 

gH = w1u1 – w2u2 

(N is the r.p.m.)

Additional
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Performance Description
For a given propeller design:
u  ND (N speed, D outer diameter)

Q  u Area  Q/ND3 ~ Const CQ

gH  u2  gH/N2D2 ~ Const CH

Specific speed in SI (N in rad/s)
Ns = CQ

0.5/CH
0.75

     = NQ0.5/(gH)0.75    D disappears!

Mixed FlowAxial Flow Radial Flow

High speed and/or Q; low P Low speed and/or Q; High P

If Ns is defined as  (N in rpm)
Ns = NQ0.5/(H)0.75 
Q in l/s  ;  H   in m    
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Typical Performance Curves

Q

gH

Q

gH

Axial Flow Pump Radial Flow Pump

b.e.p.

b.e.p.

b.e.p.
=Best
Efficiency
Point

pump

o.p.
=Operating
Point

o.p.

o.p.

Load

gH

Q

pump
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To retain for chapter 9

 rr= AvdAm nnvMass balance 0 + min – mout = dms/dt
. .

Momentum F + minvin – moutvout = d(msvs)/dt
. .

For steady adiabatic flow of liquids: q=0 w=Ppump/r h=P/r + u

Ppump/r - u = P/r + v2/2 + gz

Losses due to friction

Bernoulli's eq.:

Energy (1st Law)

Losses in ducts: Major losses: Plosses/r = f L/Dh v
2/2 Plosses/r = k v2/2Minor losses:

Fluid machines types Positive displacement – Radial – Axial - Mixed

Fluid machines sizing
Selecting by specific speed: Ns = N Q/(gH)3/4, N in rpm, Q in l/s, H in m
selecting adequate diameter and rotating speed

Operating point – Best efficiency point

Pump power 
W= mPpump/r
W=gQHpump

..
.

Reynolds number Re = v Dh/n, v in m/s, Dh in m, n in m2/s
Dh = 4 Area / Perimeter .

Friction coef f is f(Re, relative roughness) see Moody chart 



Geothermal Energy Capacity Building in Egypt (GEB)

Thermal  Engineering   for  Geothermal 
Energy

  

10
 
–

 
Heat transfer
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Heat Transfer Modes

Heat can be transferred by 3 different modes

Hot Body

(molecules vibrate 

At high speed)

Cold Body
(molecules 

vibrate 

at low speed)

Conduction

Convection

Radiation

Emission of a 

photon due to 

a transition

Of an electron

Q
.

Q
.

Q
.
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Conduction mono – dimensional 1

Block at 
Temperature 

TA La

a

Section a-a

Area A
Block at 

Temperature 
TB

Q depends on what?
.

To find the relation,
First remark:

➢if 2 bars identical & parallel, 

    Area A doubles, Q doubles,  Q  A
. .

Q
.

➢ On the material

➢ on DT = TA – TB

➢ On dimensions L & A
Q
.

TA

L

TB

Q
.

Section a-a

Area =2A

( ).,, matLTfAQq D== 

a

a

Case A

Case B



Thermodynamics for Geothermal Energy 4/??

If 2 bars identical in series, 
    With DT = TA – TB = TB – TC 
  Same  q in each bar

       i.e. If L doubles & DT doubles:
 q does not change

     q = f(DT / L, matter)

Conduction mono – dimensional 2

TA

L, DT

TC

.

.

Q
.

q = - k (TB – TA)/L
.

q = -k dT/dx
.

Fourier Law( )
( ) LTTk

matLTfq

BA −

D= .,

Thermal Conductivity

Limit for L = dx → 0:

L, DT

Q
.

TB

NB:
➢If DT/L = 0 then q = 0

.

2L, 2DT

.

Case C
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Case of a sphere: 
(qv=0) T1 T2

Case of a cylinder:
(qv=0)  

T1

T2

L

Case of a block:
(qv=0) 

T1 T2

A

Conduction in a variable section

x

dx

Q(x)
.

Q(x+dx)
.

dQ(x)/dx = 0 = d(kAdT/dx)/dx     (2)
.

kAd2T/dx2 = 0; 

T=T1+(T2-T1)x/L

Q=kA/L (T1-T2)
.

k 2p L d(r dT/dr)/dr = 0

T=T1+(T2-T1) ln(r/r1)/ln(r2/r1)

Q=2p kL (T1-T2)/ ln(r2/r1)
.

.

L

Q(x) = - kAdT/dx     (1)
.

(2) 

i.e.

(1) 

(2) 

i.e.

(1) 

(2) 

i.e.

(1) 

x

k 4p d(r2 dT/dr)/dr = 0

T=T1+(T2-T1) (1-r1/r)/(1-r1/r2)

Q= 4pk (T1-T2)r1/(1-r1/r2)
.

dQ(x)/dx = qvA = -d(kAdT/dx)/dx (3)
.
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Transfer by convection

Solid walls

q  (k /d) (Tp – T) 
.

In the boundary layer (Low velocity):

Temperature

T

Tp

v

speed

Fluid

Case of « turbulent » exchange:

a a

q = h DT 
.

In general: Newton’s law of cooling

Due to eddies, 
an exchange of packets of fluid
(hot/cold) takes place through surface a-a
➢Associated heat: q  (TA – TB)

.

Boundary layer
(Near the wall)

d

Zone of
Intense mixing
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Transfer by radiation: 1- absorption

Energy 
incident Ei

Energy 
reflected Er=r Ei

Energie 
transmitted 

Et=t Ei

Energy 
absorbed Ea=a Ei

Incident Ray

By conservation:
 a  + r  + t = 1

Special cases

Perfect mirror:            r = 1

Perfect transparent : t = 1

Perfect absorbent
    = Black body:        a = 1
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2- Emission

Every body, at any temperature, emits thermal radiation

Energy 
absorbed

Energy 
emittedBlack body

Energy 
absorbed

Energy 
emittedNon black body

In case of equilibrium, energy absorbed = energy emitted

At the same temperature, 
qbb = s T4.

s  = 5.67*10-8 W/K4

Coefficient of
Stefan - BoltzmannBlack body (b.b.) emits the most:

In general, q = e s T4.
where e = emissivity  1

Kirchhoff Law: in case of equilibrium (same temperature) e = a
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Fins

Chip
package

Thermal
grease

Heat
sink

Perimeter P

Area A

q(x) q(x+dx)

dx

qh

[q(x+dx) –q(x) ] A = qh P dx

q(x) = - k dT/dx

qh = h (T-Ta)

x
dx

Fin
Base
T=Tb

Ambient
T=Ta

L0

d2T/dx2 – m2(T-Ta) = 0

m2 = hP/kA

mL

F
in

 e
ff

ic
ie

n
cy

 e

If T(0)=Tb; dT/dx |x=L = 0

T-Ta= (Tb – Ta) cosh(m(L-x))/cosh(mL)

Q= -kAdT/dx|x=0 = kAm(Tb-Ta) tanh(mL)

Fin efficiency e = Q/Qmax = Q/(hLP(Tb-Ta)) = tanh(mL)/mL

Additional
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Geothermal temperature gradient

According to the
International Union of Geodesy and Geophysics

crust

mantle

core

Geothermal out power = 44.2 TW

> 2 times world consumption 

Replenished by 30 TW of radioactive decay

BUT low density: 0.087 W/m2

Geothermal thermal gradient in earth crust ~ 25 – 30oC/km 
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Soil heat transfer properties
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Transient conduction in near soil

Surface Temperature Ts(t)

Initial 
Temperature 

Ti

x → 
over ~ 20m

Governing equation:

Thermal diffusivity a in m2/s

Initial condition: ( ),0 iT x T=

( ) ( )2

2

, ,T x t T x t

t x
a

 
=

 

Boundary conditions:

( ), iT x t T→  =

( ) ( )0, sT x t T t= =
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Effect of sudden surface T change

Assuming: Ti = 20oC, Ts = 40oC
asand = 2.4 10-6 m2/s, asat clay = 7.4 10-6 m2/s

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

In sand

T 3hrs sand

T 6 hrs sand

T 12 hrs sand

x
20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

In moisture saturated clay

T 3hrs sat clay

T 6 hrs sat clay

T 12 hrs sat clay

x
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Effect of diurnal variations

Assuming diurnal swing is: Tmin = 0oC, Tmax = 40oC
asand = 2.4 10-6 m2/s, asat clay = 7.4 10-6 m2/s

0

5

10

15

20

25

30

35

40

0 5 10 15

Diurnal change
Tmin sand 1 day

Tmax sand 1 day

Tmin clay 1 day

Tmax clay 1 day

m depth

oC
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Effect of annual variations

Assuming annual swing is: Tmin = 0oC, Tmax = 40oC
asand = 2.4 10-6 m2/s, asat clay = 7.4 10-6 m2/s

0

5

10

15

20

25

30

35

40

0 5 10 15

Annual change

Tmin sand 1 year

Tmax sand 1 year

Tmin clay 1 Y

Tmax clay 1 year

m depth

oC
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To retain for chapter 10

Heat transfer modes Conduction – Convection – Radiation 

Steady conduction

T=T1+(T2-T1)x/L    Q=kA/L (T1-T2)

.
T=T1+(T2-T1) ln(r/r1)/ln(r2/r1)    Q=2p kL (T1-T2)/ ln(r2/r1)

.

T=T1+(T2-T1) (1-r1/r)/(1-r1/r2)    Q= 4pk (T1-T2)r1/(1-r1/r2)

.

Fourier Law q = -k dT/dx

For a block

For a cylinder

For a sphere

Convection q = h DT Radiation q = e s T 4 s  = 5.67*10-8 W/K4

Geothermal thermal gradient in earth crust ~ 25 – 30oC/km Applications to geothermal

Transient conduction Temperature swing near earth surface: disappears in ~ 10m
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